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Abstract
Purpose: The investigation aims at proposing a model for cracked piezoelectric strip which is capable to arrest the crack.
Design/methodology/approach: Under the combined effect of electrical and mechanical loadings applied at the 
edges of the strip, the developed saturation zone is produced at each tip of the crack. To arrest further opening of 
the crack, the rims of the developed saturation zones are subjected to in-plane cohesive, normal uniform constant 
saturation point electrical displacement. The problem is solved using Fourier integral transform method which 
reduces the problem to the solution of Fredholm integral equation of the second kind. This integral equation in 
turn is solved numerically.
Findings: The expressions are derived for different intensity factors and energy release rate. A qualitative 
analysis of the parameters affecting the arrest of opening of the crack and fatigue crack growth with respect to 
strip thickness and material constants are presented graphically.
Research limitations/implications: The investigations are carried out by considering the material electrical 
brittle. Consequently, the zones protrude along the straight lines ahead of the crack tips. And further, the small 
scale electrical yielding conditions are used.
Practical implications: Piezoelectric materials are widely getting used nowadays, even in day to day life like 
piezoelectric cigarette lighter, children toys etc. And, its advance used in technology like transducers, actuators has 
been already in progress. So, the aspect of cracking of piezoelectric materials are of great practical importance.
Originality/value: The piezoelectric material under the combined effect of electrical and mechanical loadings 
gives the assessment of electrical displacement which is required to arrest the crack. The various useful 
interpretations are also drawn from the graphs.
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1. Introduction 
The study of stress and electric displacement near a Griffith's 

type mode-III crack tips in piezoelectric media is carried out by Li 

[1]. Lynch [2] investigated the electric field induced cracking in 
ferroelectric ceramic. Gao and Barnett [3] established the local 
energy release rate for a piezoelectric crack. Gao [4] developed a 
strip saturation model for a finite crack perpendicular or parallel 

1.	�Introduction

 

to the poling axis of an infinite poled piezoelectric ceramic 
medium. Using elastoplastic fracture mechanics approach for 
crack growth simulation in the presence of residual stress fields is 
presented [5] using a boundary element method. A numerical 
analysis was conducted [6] to establish basic toughening 
mechanism. A crack arrest model [7] proposed for a poled 
piezoelectric plate weakened by a finite hairline straight crack. 
The paper [8] described the principle of the process of micro-
grinding using coated piezoelectric materials. A modified strip 
yield model is proposed [9]. The Acoustic Emission (AE) method 
was employed to study [10] the processes of surface crack 
initiation and evaluation in surface protective coatings. A finite 
element formulation [11] was developed for modelling the 
dynamic and static response of laminated plates. The saturation 
strip model for piezoelectric crack is re-examined by Li [12] in a 
permeable environment to analyse fracture toughness of a 
piezoelectric ceramic [13] analyzed the problem of a crack in a 
ferroelectric ceramic with perfect saturation under electric 
loading. A strip saturation model was employed by Beom et al. 
[14] to investigate the effect of the electrical polarization 
saturation on electric fields and elastic field for a cracked 
electrostrictive material under purely electrical loading. 
 
 

2. Fundamental formulation 
 

As it is well-known for a two-dimensional out-of-plane 
displacement iu and in-plane electrical field Ei (i=x,y,z) may be 

defined as 0,  ( , )x y zu u u w x y  and 

( , ) ,   ( , ) ,  0x x y y zE E x y E E x y E . 

Constitutive equations for orthotropic piezoceramic poled in 
the z-direction may be written as 

44 , 15 ,xz x xc w e                                                        (1)                                                       

44 , 15 ,yz y yc w e                                                        (2)                                                                                     

15 , 11 ,x x xD e w                                                         (3)              

15 , 11 ,y y yD e w                                                         (4)         

, ,,x x y yE E                                                       (5)                                                                                                                                     

Governing equation has the form of: 
2 2

44 15 0,c w e                                                      (6)    
2 2

15 11 0 ,e w                                                      (7)         

where  is the electric potential, 44c is the elastic stiffness 

constant, 11  is the dielectric constant and 15e  is the 
piezoelectric constant. Comma implies the partial differentiation 

with respect to argument following it. 2  denotes the two-
dimensional Laplacian operator. Equations (6 and 7) are solved 
for the functions ( , ) and ( , )w x y x y  using Fourier integral 
transform method and taking inverse; these may be written as 

1 10

0

2( , ) [ ( ) cosh( ) ( )sinh( ) ]

cos( ) ,i

w x y A y B y

x d a y

             (8)      

1 20

0

2( , ) [ ( ) cosh( ) ( )sinh( ) ]

cos( ) ,i

x y B y B y

x d b y

             (9) 

The arbitrary constants 0 0,i ia b  and arbitrary functions 

( ), ( ) { 1,2}i iA B i  are determined from the boundary 
conditions of the problem. 
 
 

3. Statement of the problem 
 

A plane-strain problem is investigated for a narrow 
piezoelectric ceramic strip. The strip occupies the region 

x  and h y h  in xoy-plane and is thick 
enough in z-direction to allow for the anti-plane shear state. The 
strip is cut along a finite hairline straight crack lying on ox-axis 
and occupies the segment a x a . The edges of the strip 

are subjected to uniform shear stress 0 and uniform electrical 
displacement D0. Consequently, the rims of the crack yield 
electrically forming of the saturation zones S1 and S2 at the tips –a 
and a of the crack respectively. These saturation zones S1 and S2 
occupy the interval b x a  and ; 0,a x b y  
respectively. To arrest the crack from further opening the rims of 
the saturation zones are subjected to a normal cohesive uniform 
saturation point at electrical displacement Dy= DS. The entire 
configuration is depicted in Fig. 1.  
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Fig. 1. Configuration of the problem 
 
 

4. Mathematical model  
 

A narrow piezoelectric strip of thickness for 2h  occupies the 
region x  and h y h   in xoy-plane. It is cut   
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along a hairline crack occupying the segment ; 0b x b y . 
The boundary conditions of the problem are translated as: 

 

0 0

(i) ( ,0) 0 for 0

(ii) ( ,0) 0 for 
(iii) ( ,0) ( ,0) for 0
(iv) ( ,0) 0 for 
(v) ( ,0) ( ,0) for 0

(vi) ( ,0) ( ) for 0

(vii) Case I: ( , ) , ( , )

(viii) Case II:

yz

V
x x

V
y y

y s

yz y

yz

x x a
w x a x
E x E x x a

x a x
D x D x x a
D x D H x a x b

x h D x h D

0 0( , ) , ( , )yx h D x h D

 

 
where superscript V denotes that the quantities refer to void inside 
the crack. H( ) denotes Heaviside function and 0  is the 
uniform shear strain applied on the edge of the boundary. 
The desired functions ( , ) and ( , )w x y x y  for the problem 
are obtained by satisfying the boundary conditions (i to ix), 
obtained in equations (8 and 9). 
 
 

5. Solution for Case I and Case II  
 

Using values of ( , ) and ( , )w x y x y  from equation (8 
and 9) and edge boundary conditions (viii) one 

obtains 0 0, ( , )i ia b i I II . Superscript i denotes that the 
quantities refer to Case I or Case II. 

Remaining boundary conditions (i to vi) yield following set of 
dual integral equation to determine ( ) and ( )i iA B  

 

10
( )sin( ) 0 for 0B x d x a            (10)                                                 

10
( ) cos( ) 0 forB x d a x        (11)                    

10

0
15

( ) tanh( )cos( )

( ) for 0
2s

A h x d

d D H x a x b
e

                   (12) 

 

10
( ) cos( ) 0 forA x d b x            (13) 

         
where 

0 15 0 11 0
i id e a b  .                            (14)                                                                                          

 
For convenience of the function 1 2( ) and ( )  are 
introduced as   

12

1 1 0
0

A ( ) = ( ) ( )
2
b J b d                            (15) 

12

1 2 0
0

( ) = ( ) ( )
2
aB J a d                         (16)     

where 0J  is Bessel’s function of first kind and zero order. 

Equations (10, 11 and 16) lead to 

1( ) 0B                                                                               (17)                 
Edge boundary conditions together with equations (15 and 

16) give  
 2 1 2( ) tanh ( ) and ( ) = 0A h A B                        (18)                  

To determine 1( ) ,A  its value from equation (15) is 
substituted in equations (12-13) which yield to a Fredholm 
integral equation of second kind to determine 1( )   

1

1 10

0

15
1/2

10

15 15

( ) ( , ) ( )

,

2 sin , 1
2

s

K d

d b
e a

d D b b
e e a a

            (19)  

where 

0 00
( , ) tanh 1 ( ) ( )hK J J d

a
 (20)   

                
                 

6. Applications  
 

The electric displacement intensity factor at the tip x=b is 
obtained using the definition  

 

15 1lim 2 ,0 (1)D
I yx b

K x b D x e b  

Analogously, the electric field intensity factor E
IK  at the tip x=b 

is obtained using the definition  
 

lim 2 ,0 0E
I yx b

K x b E x       

Sliding mode stress intensity factor at the tip x=b is obtained as 

44 1lim 2 ,0 (1)S
III yzx b

K x b x c b       

        
Analogously, sliding mode strain intensity factor at the tip x=b is 
obtained as 

1lim 2 ,0 (1)III zyx b
K x b x b  

Energy release rate for the anti-plane case is obtained as  

6.	�Applications

5.	�Solution for Case I and 
Case II

 

2
44 1

1 ( ) (1)
2 2

S D E
III III I I

bJ K K K K c                     

 
The energy release rate for a cracked piezoelectric infinite 

plate is obtained by taking limit h  one obtains 
 

2
144

02
15

2 cos
2 s

cb aJ D D
e b

                                                                  

 
The length of the saturation zone b a  is obtained from 

the fact that the energy release rate becomes zero at the tip 
x b  which yields following equation to determine b 

 

0 15 /
cos ,

2 s

D e U h ba
b D

    

                                                                     

where   
1

10
/ ( , ) ( )U h b K d   

                                                                        
 
7. Case study 

 
The various material constants have been taken from [15]. 

Energy release rate is plotted against strip width to crack length 
ratio in Fig. 2. It is observed that the energy release rate decreases 
as the strip width is increased. It is independent on the ceramic of 
the strip. As the ratio D0/ DS is increased the energy release rate is 
reduced, thus, the crack opening is arrested.  
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Fig. 2. Energy release rate versus strip width to crack length ratio 
 

Fig. 3 shows the variation of energy release rate versus 
applied electrical displacement for different h/a ratio. It may be 
noted as h/a ratio increases i.e. the strip width becomes large there 
is less energy release. It is observed that BaTiO3 and PZT-6B 
follow the behaviour of each other while PZT-5H lies farther 
away. 
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Fig. 3. Energy release rate versus applied electric displacement 
 
 
8. Conclusions 
 
 

The strip saturation model is proposed for a cracked 
piezoelectric ceramic strip. Energy release rate is calculated. And, 
its variation with respect to strip width and saturation zone length 
also shows that model is capable to arrest the crack opening. 
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