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Abstract
Purpose of this paper: In this paper an application of the new method for solving the heat conduction equation 
in the heterogeneous cast-mould system, with an assumption of the ideal contact at the cast-mould contact 
point, is introduced. An example illustrating the discussed approach and confirming its usefulness for solving 
problems of that kind is also presented in the paper.
Design/methodology/approach: For solving the discussed problem the homotopy perturbation method 
is used, which consists in determining  the series convergent to the exact solution or enabling to built the 
approximate solution of the problem.
Findings: The paper shows that the homotopy perturbation method, effective in solving many technical 
problems, is successful also for examining the considered problem.
Research limitations/implications: Solution of the problem is provided with the assumption of an ideal 
contact between the cast and the mould. In further, research of the discussed method shall be employed to 
solve problems involving the presence of thermal resistance at the cast-mould contact
Practical implications: The method allows to determine the solution in form of the continuous function, 
which is significant for the analysis of the cast cooling in the mould, in order to avoid the defects formation 
in the cast.
Originality/value: Application of the new method for solving the considered problem.
Keywords: Numerical techniques; Heat transfer; Cooling of the cast; Homotopy perturbation method
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1. Introduction
 

In the recent time a number of methods enabling to solve 
different kinds of physical and technical problems have found an 
application. Group of those methods include, among others, the 
Adomian decomposition method [1-4], the variational iteration 
method [5-11] and the homotopy perturbation method [11-19]. 
General mathematical formulation of the above mentioned 
methods allows to find a solution of the wide class of nonlinear 
operator equations. The idea of all of those methods consists in 
constructing the functional sequence, or series, which limit (or 
sum) represents the solution of the considered problem (under the 
proper assumptions). In general, the speed of convergence of the 
received sequences or series is quite good, thanks to which 
calculating only a few first terms ensures usually the satisfying 
approximation of the sought solution. The evidence of popularity 
of those three methods gives the fact that the special issues of 
different journals are sacrificed exactly to them (among others 
also the journals from ISI Master Journal List, like Computers & 
Mathematics with Applications and Topological Methods in 
Nonlinear Analysis). 

The Adomian decomposition method (ADM) is named after 
its inventor, George Adomian, and is used for solving the 
different kind of problems described, for example, with the aid of 
partial and ordinary differential equations, integral equations and 
so on. In papers [20-28], ADM is used for solving the linear and 
nonlinear heat conduction equation. The wave equation is 
examined in papers [29-31], while in papers [32,33] the inverse 
problem for differential equations is considered. In paper [34], the 
authors solve, by using ADM, the fuzzy differential equations and 
in [35] the boundary problem for the differential equations of the 
higher order is considered. Another applications of ADM in 
examining the mathematical models describing different kinds of 
technical problems can be found in papers [36-38]. Whereas, 
convergence of the Adomian method is discussed in [20,39,40]. 

The other mentioned methods, variational iteration method 
(VIM) and homotopy perturbation method (HPM), was created by 
Ji-Huan He. VIM is useful for solving many different kinds of 
nonlinear problems. Momani and his colleagues [41] have applied  
VIM for finding the solution of ordinary differential equations 
with boundary conditions. Similarly, Dehghan and Shakeri [42] 
have used the described method for determining the approximate 
solution of some differential equation arising in astrophysics. 
There are also available papers in which VIM is applied for 
finding the exact or approximate solution of partial differential 
equations. For example, Momani and Abuasad [43] have used 
VIM for solving the Helmholtz equation and Wazwaz [44,45] has 
applied the method for determining the exact solutions of Laplace 
and wave equations. In papers [46,47], the heat-like and wave-like 
equations are solved, while the heat transfer and diffusion 
equations are examined, by means of VIM, in [48,51]. Solution of 
the systems of partial differential equations with the aid of VIM is 
presented in [52], whereas Tatari and Dehghan in [53] have used 
this method for computing a parameter in semi-linear inverse 
parabolic equation. Convergence of VIM is discussed by Tatari 
and Dehghan in [54]. Some new interpretations and applications 
of the variational iteration method are proposed by He in 
papers [55-57]. 

Homotopy perturbation method arised as a combination of 
elements of two other methods: the homotopy analysis method 
[14,58-62] and the perturbation method [16,63,64]. HPM 
appeared as an effective and powerful method for solving the 
wide class of problems. For example, Ramos [65] has applied  
HPM for solving the nonlinear second-order ordinary differential 
equations with boundary conditions. Similar application is 
presented in paper [66]. Solution of boundary value problems for 
integro-differential equations by using the homotopy perturbation 
method is described in [67], whereas Shakeri and Dehghan [68] 
have used the described method for solving the delay differential 
equation arising in biology and engineering. There can be also 
found some papers in which HPM is applied for determining the 
exact and approximate solutions of partial differential equations, 
like, for example, the nonlinear wave equations [69], the wave 
and the nonlinear diffusion equations [70] and the fractional 
wave-like equation [71]. Furthermore, Li and his colleagues in 
[72] have used HPM for examining the time-fractional diffusion  
equation with the moving boundary condition, Shakeri and 
Dehghan in [73] have applied the method for solving the inverse 
problem of diffusion equation, Sadighi and Ganji in [74] have 
found the exact solutions of Laplace equation and Biazar and 
Ghazvini in [75] have solved the hyperbolic partial differential  
equation by means of HPM. Finally, Ganji and his colleagues in 
the series of papers [48,49,63,76,77] have considered the 
application of HPM for solving different problems concerning the 
heat transfer processes. Some information about the convergence 
of the homotopy perturbation method can be found in 
papers [12,78]. 

Employees of the Faculty of Mathematics and Physics at the 
Silesian University of Technology, especially researchers of the 
Department of Applied Mathematics, from many years deal in 
their work with applying the above described methods for solving 
various problems concerning the heat conduction. First effect of 
this research become the chapter in volume [4], in which the 
Adomian decomposition method is presented. Application of this 
method for solving the heat conduction problems is also described 
in monograph [79]. In papers [80,81], ADM combined with some 
optimization procedures is used for solving the inverse one-phase 
Stefan problem with the boundary condition of the first and 
second kind. In the presented approach, the distribution of 
temperature in the considered domain is calculated in the ground 
of ADM. The received temperature distribution depends on some 
coefficients, values of which are determined with the aid of the 
mean square method. Accuracy of the procedure is verified on the 
basis of the exact solution. The same approach for the direct 
Stefan problem is presented in papers [82,83]. In the further 
works another approach is proposed, in which the Stefan problem 
is first approximated by the system of ordinary differential 
equations, and next, the obtained system is solved with the aid of 
ADM. In this way, the need of constructing and minimizing some 
functional, which was necessary in previous approach, can be 
omitted. The same way of using ADM is showed in paper [84], 
for the case of one-phase Stefan problem, and in [85], for the case 
of two-phase Stefan problem. Comparison of precision of the one-
phase Stefan problem solution, received with the aid of Adomian 
decomposition method and Runge-Kutty method of the fourth 
order, is presented in [86]. In the both approach the Stefan 
problem is first approximated by the system of ordinary 

differential equations, solved afterwards by means of ADM and 
Runge-Kutty method. Received results demonstrate better 
precision of Adomian decomposition method, also the time of 
calculations is shorter for ADM. In paper [87], application of 
ADM for finding the exact solution of heat conduction equation in 
the cast-mould heterogeneous domain is described. Adaptation of 
the variational iteration method for solving that kind of problem is 
proposed in [88]. In works [89-93], VIM is used for solving the 
one-phase direct and inverse Stefan problem, whereas paper [94] 
presents an application of the homotopy perturbation method for 
determining the exact (or approximated) solution of the one-phase 
Stefan problem. Moreover, researchers of the Department of 
Applied Mathematics have prepared many other works concerning 
the direct and inverse heat conduction problems, like for example 
[95-107]. In part of those papers, verification of the developed 
methods is executed by using the experimental data received with 
the aid of UMSA equipment (Universal Metallurgical Simulator 
and Analyzer), designed for analysis of the heat processes 
occurring in metals [108-110]. Experimental results were received 
thanks to the collaboration with the employees of the Institute of 
Engineering Materials and Biomaterials in the Faculty of 
Mechanical Engineering of the Silesian University of Technology. 

In the current paper, an application of the homotopy 
perturbation method for solving the heat conduction equation in 
the heterogeneous cast-mould system, with an assumption of the 
ideal contact at the cast-mould contact point is presented. 
An example illustrating the discussed approach and confirming 
usefulness of the proposed procedure for solving problems of that 
kind is also showed. 
 
 

2. Homotopy perturbation method 
 

By using the homotopy perturbation method, solution of the 
following nonlinear operator equations can be found: 
 

,),()( zzfuA  (1) 
 
where A  denotes the operator, f is the given function and u is 
the sought function. Let us assume that the operator A  can be 
presented as the sum: 
 

),()()( uNuLuA  (2) 
 
where L  represents the linear operator and N  denotes the 
nonlinear operator. From this, equation (1) can be written in the 
form:  
 

.),()()( zzfuNuL  (3) 
 
Let us define a new operator, named the homotopy operator, in 
the following way: 
 

)),()(())()(()1(),( 0 zfvApuLvLppvH  (4)  
 
where ]1,0[p  is the, so called, homotopy parameter, 

Rpzv ]1,0[:),( , and 
0u denotes the initial approximation 

of solution of the equation (1). By using the relation (2) we 
obtain: 
 

)).()(()()()(),( 00 zfvNpuLpuLvLpvH  (5) 
 
Since )()()0,( 0uLvLvH , then for 0p  solution of the 
operator equation 0)0,(vH  is equivalent to solution of the 
trivial problem 0)()( 0uLvL . Whereas, for 1p  solution of 
the operator equation 0)1,(vH  is equivalent to solution of the 
input equation. In this way, the monotonic change of parameter 
p , from 0 to 1, corresponds with the monotonic change of the 

equation, from the trivial one: 0)()( 0uLvL  to the input form 
of the considered equation (and with the monotonic change of the 
solution v , from 

0u  to u ). 
Now, let us assume that the solution of equation 0),( pvH  

can be written in the form of the power series:  
 

.
0j

j
j upv  (6) 

 
If the above series is convergent, then, by substituting 1p , we 
receive the solution of equation (1):  
 

.lim
01 j

jp
uvu  (7) 

 
 Information about convergence of the series (6) is included in 
papers [12,78]. In many cases the speed of convergence of series 
(7) is great, thanks to which the sum composed from only few 
first terms gives already a very good approximation of the sought 
solution. By confining to the first n+1 elements, we get the, so 
called, n-order approximate solution: 
 

.ˆ
0

n

j
jn uu  (8) 

 
 For finding the form of functions 

ju  we substitute the relation 

(6) into the equation 0),( pvH  and we compare the elements 
appearing by the same powers of parameter p . In this way, we 
receive the sequence of operator equations, which allows to 
determine the successive functions 

ju . In this manner, solving of 

the input problem can be reduced to the task of solving the 
sequence of problems, simple to analyse.  
 
 

3. Mathematical model of the problem 
 

In the current paper we consider the problem of determining 
distribution of temperature in the heterogeneous cast-mould 
system, with an assumption of the ideal contact at the cast-mould 
contact point.  Let us start with formulation of the mathematical 
model of the problem. 

1.	�Introduction
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Let us have two regions: ),0[],0,[:),( 11 ttxxtxD  
and ),0[],,0[:),( 22 ttxxtxD  (see Fig. 1).  
 

 
 
 

Fig.1. Domain of the considered problem 
 
 
On the boundary of these domains five components are 
distributed:   
 

,),0[:),(
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tttx
ttt
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xxx

 

 
where the initial and boundary conditions are given. 

In the cast (region 1D ) and mould (region 2D ) we consider 
the heat conduction equations: 
 

,),(,),(),( 12
1

2

1
1 Dtx

x
txuatx

t
u  (9) 

,),(,),(),( 22
2

2

2
2 Dtx

x
txuatx

t
u  (10) 

 
where ,2,1, iai

 are the thermal diffusivity, ,2,1, iui
 denote 

the temperature, and t  and x  refer the time and spatial location, 
respectively. On boundaries 1  and 2  the initial conditions are 
given: 
 

],0,[),()0,( 111 xxxxu  (11) 
].0,[),()0,( 222 xxxxu  (12) 

 
On boundaries 

3
 and 

5
 the Dirichlet conditions are determined:  

 
),,0[),(),( 111 ttttxu  (13) 

).,0[),(),( 222 ttttxu  (14) 

 And finally, on the cast-mould contact boundary (boundary 
4 ) the boundary conditions of the fourth kind are known 

(condition of temperature continuity and condition of heat flux 
continuity): 
 

),,0[),,0(),0( 21 tttutu  (15) 

),,0[,),(),(

0

2
2

0

1
1 tt

x
txu

x
txu

xx

 (16) 

 
where ,2,1, ii

 denote the thermal conductivity. Additionally, 
we assume that functions describing the considered problem 
satisfy the consistency conditions: 
 

).0,0()0,0(),0()(

),0()0(),0()(

2
2

1
1222

21111

xx
x

x
 

 
 We seek the functions ),(1 txu  and ),(2 txu  defined in 
domains 1D  and 2D , respectively, which satisfy the heat 
conduction equations together with the above presented 
conditions. 
 
4. Solution of the problem 
 

Let us start with defining the homotopy operators for 
equations (9) and (10). The proper operators have the form (for 

,2,1i ): 
 

.1),( 2
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2

2
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2

2

2

t
v
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u
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x
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x
vpvH i

i

iii
ii

 (17) 

 
Solutions of the equation (for ,2,1i ): 
 

0),( pvH ii
 (18) 

 
will be sought in the form of the power series of variable p : 
 

.
0

,
j

ji
j

i upv  (19) 

 
By substituting the relation (19) into the equation (18) (and by 
using definition (17)) we receive (for ,2,1i ): 
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or, equivalently: 
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 By comparing the elements occurring by the same powers of 
parameter p  we obtain the following systems of equations: 
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and for 2j :  
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 Systems of partial differential equations (22) and (23) must be 
additionally completed with the boundary conditions, which 
ensure the uniqueness of solution. So, for the system (22) we put 
the conditions: 
 

,),0(),0(),0(),0(
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while for the systems (23) we give the boundary conditions of the 
form (for 2j ):  
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 In this way, instead of solving the input problem we will 
consider the sequence of systems of partial differential equations, 
which are simple to solve. Before starting the calculations we 
need to determine the initial approximations of functions 

),(0, txui
. As the initial approximations we will take the functions 

describing  initial conditions (for ,2,1i ): 
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5. Computing example 
 

Application of the presented procedure will be tested with the 
aid of an example, in which ,11x  ,12x  ,4/11a  ,12a  

11  and .22  The initial conditions have the form:  
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while the boundary conditions of the first kind are the following: 
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 The exact solution of such formulated problem give the 
functions: 
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functions we put the functions satisfying initial conditions:   
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 By solving the system (22) with boundary conditions (24) we 
find: 
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 The next functions ),(, txu ji

, ,2,1i  ,2j  are calculated 

recurrently by solving the systems (23) with boundary 
conditions (25). For example, for 2j  and 3j  we receive:   
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In Table 1, the errors of reconstruction of the functions 

describing temperature distribution in domains 1D  and 2D  are 
compiled. Whereas, Table 2 presents the errors, with which the 
approximate functions 

nu ,1̂
 and 

nu ,2ˆ  fulfil the initial conditions for 

different number of iterations n  (see the relation (8)). The other 
boundary conditions on boundaries 

3
, 4  and 

5
 are satisfied 

exactly. Presented results show that the errors are getting smaller 
with the growing number of terms in the sum (8).  

4.	�Solution of the problem
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Let us have two regions: ),0[],0,[:),( 11 ttxxtxD  
and ),0[],,0[:),( 22 ttxxtxD  (see Fig. 1).  
 

 
 
 

Fig.1. Domain of the considered problem 
 
 
On the boundary of these domains five components are 
distributed:   
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where the initial and boundary conditions are given. 

In the cast (region 1D ) and mould (region 2D ) we consider 
the heat conduction equations: 
 

,),(,),(),( 12
1

2

1
1 Dtx

x
txuatx

t
u  (9) 

,),(,),(),( 22
2

2

2
2 Dtx

x
txuatx

t
u  (10) 

 
where ,2,1, iai

 are the thermal diffusivity, ,2,1, iui
 denote 

the temperature, and t  and x  refer the time and spatial location, 
respectively. On boundaries 1  and 2  the initial conditions are 
given: 
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On boundaries 

3
 and 

5
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(condition of temperature continuity and condition of heat flux 
continuity): 
 

),,0[),,0(),0( 21 tttutu  (15) 

),,0[,),(),(

0

2
2

0

1
1 tt

x
txu

x
txu

xx

 (16) 

 
where ,2,1, ii

 denote the thermal conductivity. Additionally, 
we assume that functions describing the considered problem 
satisfy the consistency conditions: 
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 We seek the functions ),(1 txu  and ),(2 txu  defined in 
domains 1D  and 2D , respectively, which satisfy the heat 
conduction equations together with the above presented 
conditions. 
 
4. Solution of the problem 
 

Let us start with defining the homotopy operators for 
equations (9) and (10). The proper operators have the form (for 
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Solutions of the equation (for ,2,1i ): 
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will be sought in the form of the power series of variable p : 
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By substituting the relation (19) into the equation (18) (and by 
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or, equivalently: 
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 By comparing the elements occurring by the same powers of 
parameter p  we obtain the following systems of equations: 
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and for 2j :  
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 Systems of partial differential equations (22) and (23) must be 
additionally completed with the boundary conditions, which 
ensure the uniqueness of solution. So, for the system (22) we put 
the conditions: 
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while for the systems (23) we give the boundary conditions of the 
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 In this way, instead of solving the input problem we will 
consider the sequence of systems of partial differential equations, 
which are simple to solve. Before starting the calculations we 
need to determine the initial approximations of functions 
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. As the initial approximations we will take the functions 

describing  initial conditions (for ,2,1i ): 
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recurrently by solving the systems (23) with boundary 
conditions (25). For example, for 2j  and 3j  we receive:   
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In Table 1, the errors of reconstruction of the functions 

describing temperature distribution in domains 1D  and 2D  are 
compiled. Whereas, Table 2 presents the errors, with which the 
approximate functions 

nu ,1̂
 and 

nu ,2ˆ  fulfil the initial conditions for 

different number of iterations n  (see the relation (8)). The other 
boundary conditions on boundaries 

3
, 4  and 

5
 are satisfied 

exactly. Presented results show that the errors are getting smaller 
with the growing number of terms in the sum (8).  

5.	Computing example
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Table 1. 
Errors of reconstruction of temperature distribution ( - absolute 
error, - relative error) 

n 
1u
 

1u
 

2u
 

2u
 

1 29.3327 126.16 % 29.1426 34.74 % 
10 13.7720 54.02 % 8.7552 10.44 % 
20 5.4755 21.48 % 3.4809 4.15 % 
30 2.1770 8.54 % 1.3840 1.65 % 
40 0.8655 3.39 % 0.5502 0.66 % 
50 0.3441 1.35 % 0.2188 0.26 % 
60 0.1368 0.59 % 0.0954 0.11 % 

 
Table 2.  
Errors of reconstruction of initial conditions ( - absolute error, 

- relative error) 
n 

1
 

1
 

2
 

2
 

1 0.6250 126.16 % 0.6210 34.74 % 
10 0.2676 54.02 % 0.1866 10.44 % 
20 0.1064 21.48 % 0.0742 4.15 % 
30 0.0423 8.54 % 0.0295 1.65 % 
40 0.0168 3.39 % 0.0117 0.66 % 
50 0.0067 1.35 % 0.0047 0.26 % 
60 0.0029 0.59 % 0.0020 0.11 % 

 
 The exact and reconstructed functions, describing the initial 
conditions, are also presented in Figs. 2-7. The figures display 
approximations of the 30, 45 and 60-order. Additionally, the 
errors of reconstructed initial conditions are drawn in the Figures.  
 
a) 

 
b) 

 
 
Fig. 2. Temperature on the boundary 1  (a) and error of its 
reconstruction (b) for 30n  (solid line - exact values, dashed 
line - reconstructed values)  

a) 

 
b) 

 
 
Fig. 3. Temperature on the boundary 1  (a) and error of its 
reconstruction (b) for 45n  (solid line - exact values, dashed 
line - reconstructed values)  
 
a) 

 
b) 

 
 
Fig. 4. Temperature on the boundary 1  (a) and error of its 
reconstruction (b) for 60n  (solid line - exact values, dashed 
line - reconstructed values)  

a) 

 
b) 

 
 
Fig. 5. Temperature on the boundary 2  (a) and error of its 
reconstruction (b) for 30n  (solid line - exact values, dashed 
line - reconstructed values)  
 
a) 

 
b) 

 
 
Fig. 6. Temperature on the boundary 2  (a) and error of its 
reconstruction (b) for 45n  (solid line - exact values, dashed 
line - reconstructed values)  

a) 

 
b) 

 
 
Fig. 7. Temperature on the boundary 2  (a) and error of its 
reconstruction (b) for 60n  (solid line - exact values, dashed 
line - reconstructed values)  
 
 

6. Conclusions 
 

By using the homotopy perturbation method we receive the 
function series, convergent to the solution of considered problem 
(under the proper assumptions). In many cases we are able to 
determine the sum of obtained series analytically, which means that 
we can calculate the exact solution of the examined problem. In case 
when analytic calculation of the sum of series is not possible, we still 
can use few of the first terms for building the approximate solution. 
Series received in the presented example is not convergent very fast. 
However, reviewing literature concerning the application of HPM one 
can notice that series obtained in this method is usually convergent 
much more fast, thanks to which taking only few first terms ensure 
a very good approximation of the exact solution. For example, in 
paper [94] homotopy perturbation method is used for solving the one-
phase inverse Stefan problem and, in that case, calculating only five 
first terms of the series (it means, reduction to 

5û ) gives the 
approximation of sought functions with the error less than 0.1%, 
calculating one more term reduces the error to 0.016% and another 
one - to 0.0022%. 

In the current paper solution of the problem is provided with the 
assumption of an ideal contact between the cast and the mould.. In 
future, the authors plan to consider an application of the described 
procedure for problems involving the presence of thermal 
resistance at the cast-mould contact. 
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Fig. 7. Temperature on the boundary 2  (a) and error of its 
reconstruction (b) for 60n  (solid line - exact values, dashed 
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6. Conclusions 
 

By using the homotopy perturbation method we receive the 
function series, convergent to the solution of considered problem 
(under the proper assumptions). In many cases we are able to 
determine the sum of obtained series analytically, which means that 
we can calculate the exact solution of the examined problem. In case 
when analytic calculation of the sum of series is not possible, we still 
can use few of the first terms for building the approximate solution. 
Series received in the presented example is not convergent very fast. 
However, reviewing literature concerning the application of HPM one 
can notice that series obtained in this method is usually convergent 
much more fast, thanks to which taking only few first terms ensure 
a very good approximation of the exact solution. For example, in 
paper [94] homotopy perturbation method is used for solving the one-
phase inverse Stefan problem and, in that case, calculating only five 
first terms of the series (it means, reduction to 

5û ) gives the 
approximation of sought functions with the error less than 0.1%, 
calculating one more term reduces the error to 0.016% and another 
one - to 0.0022%. 

In the current paper solution of the problem is provided with the 
assumption of an ideal contact between the cast and the mould.. In 
future, the authors plan to consider an application of the described 
procedure for problems involving the presence of thermal 
resistance at the cast-mould contact. 
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