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Analysis and modelling

Abstract

Purpose: In order to describe the rheological properties of textile products there have been used various models 
but none of them delivers the complementary solution for textiles subjected to different fields of loads. Therefore 
the idea presented by Hasley in 1945 was an inspiration for us to propose the new rheological model based on 
theory of plastic-elastic solids.
Design/methodology/approach: It was assumed that the modified rheological model would consist of two 
parallel parts: I - Hooke’s spring with rigidity C1 and II - Hooke’s spring with rigidity C2, connected in series 
with a frictional element with a constant resistance, T and additional force Kε22, and a piston with a weight m 
displacing in a liquid with a viscosity η, where ε22 is a shift of the piston from its initial position.
Findings: The proposed model represents adequately stress – strain relationships of polypropylene monofilaments 
subjected to tensile test. The results indicate that for each investigated type of nonwovens there is no significant 
difference between the shape of the theoretical and experimental elastic recovery curve during the recovery test.
Research limitations/implications: The application of presented model was used for illustration of the 
description of relaxation of polypropylene monofilament subjected to tensile load and rheological properties of 
non-woven fabrics made also from polypropylene fibres subjected to the compression loads.
Originality/value: The new rheological model was proposed. It can be universal for description of mechanical 
behaviour of textiles subjected to the tension or compression loads.
Keywords: Rheological model; Monofilament; Stress-strain curve; Relaxation; Non-woven fabrics
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1. Introduction 
 

In order to describe the rheological properties of textile 
products, there have been used various models [1– 22]. One of the 
firsts was Voigt-Kelvin’s model [1] that fails however to show 
relaxation at a constant strain. Another one was Zener’s model  
[4, 5] describing the relaxation phenomenon, but based on the 
relaxation curve, constant values of the model rheological 
parameters could not be determined for linear textile products. 
The next modification was Vangheluwe’s model [14–16], in 
which one of Hooke’s elements with a linear character was 
replaced by a spring with non-linear characteristics. This model is 
capable of describing the stress-strain curve and the relaxation 
curve, but it still does not contain Saint-Venant’s element being 
responsible for plastic strains after exceeding the limiting force. 
This lack is made up in Hoffman’s model [8] where Zener’s 
model is combined with Bingham’s element. Zener’s model is 
responsible for visco-elastic strains, while Bingham’s element is 
responsible for the representation of plastic strains. In further 
investigations, this model was modified by replacing Newton’s 
dumper in Binghman’s element with Eyring’s dumper [17]. Thus, 
the studies headed for the introduction of a successive element 
with non-linear characteristics. In this case, there was obtained a 
non-linear differential equation with no analytical solution. It 
seems that the lack of complementary description of the 
rheological properties of linear textile products resulted from the 
fact that no inertial member was taken into account. Already in 
1945, Halsey wrote [2]: “In general, in the theory of plastic-elastic 
solids it has been customary to consider these solids as being 
dependent on linear differential equations of type: 

iiii Qcqqbqa  
In this equation q is a generalized displacement from 

equilibrium, Q represents external forces, a is an inertial term 
(…), c is a potential term determining the action of the spring, 
while b is a viscosity...” 

The idea of Hasley was an inspiration for us to propose the 
new rheological model, which can be universal for description of 
mechanical behaviour of textiles subjected to the tension or 
compression loads. 
 
 

2. The idea of model  
 

It was assumed that the modified rheological model would 
consist of two parallel parts: 
I - Hooke’s spring with rigidity C1, 
II - Hooke’s spring with rigidity C2, connected in series with a 
frictional element with a constant resistance, T and additional 
force K 22, and a piston with a weight m displacing in a liquid 
with a viscosity η, where 22 is a shift of the piston from its initial 
position.  

The use of springs with rigidities C1 and C2 in the initial phase 
should reflect the linear-elastic behaviour of the object under 
testing. Once the critical value of tensile stress is exceeded, a 
further part of the model connected with the inertial-frictional 
element is actuated. The function of this system is to reflect visco-
elastic strains through the use of Newton dumper in the 

arrangement with springs C1 and C2, and the plastic strains 
realized through Saint-Venant’s element. The parallel connection 
of dumper and Saint-Venant’s element, and the mass allows an 
approximate reflection of the phenomena described in the work 
by Eyring where a dumper with non-linear characteristics was 
used. The scheme of the model is presented in Fig.1.  
 

 
 

Fig. 1. Żurek's rheological model 
 

The application of presented model was used for illustration 
of the description of relaxation of polypropylene monofilament 
subjected to tensile load and rheological properties of non-woven 
fabrics made also from polypropylene fibres subjected to the 
compression loads.  
 
 
3. The description of the relaxation of 
PP monofilaments according to urek’s 
rheological model 
 
3.1. The analytical solution of relaxation 
equation  
 
 At the strain  of model the force in the link I is:  

utCCF 111
 (1) 

Where u is the rate of straining of model and in the link II:  
utCCF 222

 (2) 
provided the force F2<T (or C2ε<T). 
  After the force acting in the link II surpasses the value T, the 
force acting in this link can be expressed as:  

2.2222.222 CutCCF  (3) 
Where 2.2 is intrinsic strain in the link II. 

After the force in the link II reaches value T, piston begins to 
move with the rate:  

22.2 F
dt

d

  (4) 
but the force F2 is now diminished by (T+K 2.2) and inertial force:  

2
2.2

2

dt
dm  (5) 

Therefore we have:  

2
2.2

2

2.22.222 dt
d

mKTCF  (6) 
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Putting this value into previous equation we receive:  

2
2.2

2

2.22.22
2.2 1

dt
d

mKTC
dt

d  (7) 

 and after simple transformation:  

m
T

m
C

m
KC

dt
d

mdt
d 2

2.2
22.2

2
2.2

2
 (8) 

According to present standards the load – elongation curves 
are determined with constant rate of elongation (or strain):  

constu
dt
d  (9) 

To simplify previous equation we can introduce: 

m
T

m
uC

m
KC

m
;;; 22

 (10) 
and we receive equation: 

t
dt

d
dt

d
2.2

2.2
2

2.2
2  (11) 

The resolution of this equation depends on the value: 
42  

 (12) 
If  = 0 we have: 

1)( 2
2.2 teBAt

t

 (13) 
The total force loading the monofilament takes the form of: 

2.222.222121 CCutCutCutCFFF  (14) 
and  

1
2

2
2

2
22 CBeCAteCtCCuF

tt  (15) 

To simplify equation (15) we can introduce: 

nbBCaACyCCu 1;;; 222

 (16)

 

and the force during the loading phase can be calculated as: 

2
22 nCbeeatytF

tt  (17) 

 
At the moment to the straining is stopped and the changes of 

force acting on filament can be registered as a function of time. 
At the moment to the force acting upon the filament is equal to: 

1
2

2
2

2
22

0

0

CBeC

eAtCtCuCF

t

t

oo  (18) 

 
and in a case of u=0 we have: 

1
2

2
2

2
2

20

C

BeCettAC

ttCttF

oo tttt

o

o

 

(19) 

To simplify previous equation we can introduce: 

nbBCaACzC 1;;; 222
 (20) 

Therefore the force during the relaxation phase can be 
calculated as: 

2
2

2
0

nCbe

ettattzttF

o

o

tt

tt

oo  (21) 

 
3.2. Experiment 
 

The verification of proposed model was completed using three 
type of polypropylene monofilaments of different diameter of 
dN=0.15; 0.30; 0.45 mm. The loading phase and relaxation phase 
was completed using Instron tester series 4204. Each type of 
monofilaments was subjected to the tensile test with the speed of 
5,50 and 500 mm/min till the strain of 15%. Next the samples 
were subjected to the relaxation during the 180 sec.  
 
3. 3. Test results  
 

The results of the empirical values of tensile forces and 
calculated according to the equation (17) for each type of 
monofilaments subjected to the tensile test with the speed equal to 
5,50 and 500 mm/min are given in Tables 1-3. For each variant 
five samples were tested. The empirical values Fi(.e) of tensile 
force were determining for five points selected within interval 
equal to 36.36 s for speed of  5 mm/min , 4.07 s for speed of  
50 mm/min  and 0.45 s for 500 mm/min. Next, after solution of 
simultaneous equations coefficients of equation (18) were 
calculated and the theoretical values of Fi(e) were determined. All 
calculation is given in Tables 1-3. In the second part of 
investigation the simultaneous equations for relaxation was solved 
similar like for tension curve. Empirical and theoretical value of 
relaxation curve was determined. Example of calculations is given 
in table 4 the result are illustrated at Figs. 2-3. The empirical and 
theoretical forces calculated for relaxation phase according to 
equation (21) for the monofilaments of diameter of 0.15 mm are 
given in Table 4. 

Example of relaxation graph of PP filament about diameter  
dN = 0.45 mm, using different speed of travel cross-beam V = 5, 
50, 500 mm/min show Figs. 2-3. 

 

 
 
Fig. 2. The values of the empirical and theoretical forces and the 
values of equation coefficients of the filament PP, dN=0.15 mm 
loaded with the rate of V=5 mm/min at the strain to 15 % and then 
subjected to relaxation 

3.2.	�Experiment

3.3.	�Test results

 3

Table 1.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN=0.15 mm loading with the 
rate of V=5, 50, 500 mm/min at the strain to 15 % 
Speed, 
mm/min 

Force, N Coefficients of Equation  
F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) y a b C2n 

 
 
5 

1.82 1.82 3.64 3.63 5.27 5.29 6.36 6.43 7.18 7.29 0.018 1.21 -57.54 3.05 

1.91 1.91 3.64 3.65 5.09 5.05 6.18 6.10 7.09 6.98 0.019 0.64 -24.11 2.48 

2.00 1.96 3.64 3.62 5.09 5.07 6.18 6.16 7.09 7.06 0.020 0.76 -33.20 2.44 

2.00 2.00 3.64 3.60 5.09 5.07 6.00 5.96 6.73 6.64 0.016 4.01 -245.61 2.94 

1.91 1.53 3.64 3.27 5.09 4.68 6.18 5.83 6.91 6.75 -0.018 0.13 17.11 15.90 

 
 
50 

2.27 2.44 4.18 4.20 5.91 5.92 7.18 7.18 8.09 8.08 0.12 4.15 -5.22 5,89 

2.18 2.04 3.91 3.81 5.45 4.96 6.64 6.34 7.45 7.09 -0.25 1.92 17.47 17.93 

2.18 2.13 4.00 3.98 5.82 5.83 7.00 7.04 8.00 7.98 0.22 30.15 -164.59 3.14 

2.18 2.10 4.00 3.92 5.73 5.62 6.91 6.74 7.91 7.68 0.24 51.84 -305.04 2.37 

2.18 1.98 4.18 4.01 5.91 5.68 7.09 6.83 8.09 7.81 0.25 39.00 -214.47 2.28 

 
 
500 

1.64 1.91 3.18 3.15 5.45 5.42 7.09 7.08 8.18 8.23 1.34 45.76 -53.88 5.42 

1.80 1.90 3.60 3.42 5.67 5.57 7.38 7.34 8.55 8.48 -2.63 15.88 12.90 20.58 

1.89 1.93 3.69 3.68 5.67 5.64 7,11 7.04 8.37 8.26 2.83 202.34 -336.59 1.31 

1.71 1.40 3.33 3.18 5.49 5.14 7.38 6.99 8.64 8.50 -8.19 21.00 38.47 46.74 

1.44 1.44 3.06 3.09 5.22 5.23 6.84 6.90 8.10 8.20 2.56 55.53 -78.78 2.05 
 
Table 2.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN=0.30 mm loading with the 
rate of V=5; 50; 500 mm/min at the strain to 15 % 
Speed, 
mm/min 

Force, N Coefficients equation 
F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) y a b C2n 

5 

8.46 8.55 16.15 15.98 22.31 22.19 26.92 28.84 30.38 30.42 0.046 25.61 22.58 22.84 

7.69 7.78 15.38 15.21 21.54 21.42 26.15 26.07 29.61 29.65 0.046 25.61 22.58 22.07 

7.69 7.78 15.38 15.21 21.54 21.42 26.15 26.07 29.61 29.65 0.046 25.61 22.58 22.07 

8.08 8.51 16.15 16.79 22.31 22.29 26.92 27.50 30.00 30.42 -0.0052 9.11 55.21 40.45 

7.69 7.55 15.38 14.90 21.92 21.43 26.54 26.08 30.00 29.66 0.068 94.31 -70.98 15.52 

50 

8.08 7.87 16.54 16.42 23.85 23.83 28.46 28.63 32.31 32.73 1.06 1178.06 -1895.67 9.24 

8.46 8.23 16.92 16.72 24.23 24.14 28.85 28.84 32.69 32.72 0.99 1018.22 -1606.15 10.80 

8.46 8.39 16.92 16.96 23.85 23.69 28.46 28.18 32.31 31.97 0.96 594.12 -862.92 10.72 

8.85 8.79 16.92 16.99 23.85 23.73 28.46 28.25 32.31 32.04 0.96 614.19 -914.65 10.79 

8.46 8.52 16.15 16.38 23.46 23.41 28.46 28.39 32.31 32.23 0.87 252.48 -325.69 13.20 

500 

5.00 5.97 13.86 13.68 25.02 25.12 33.11 32.93 38.11 38.12 0.98 156.84 -115.52 40.76 

6.93 6.93 15.78 15.78 26.56 26.32 33.88 33.95 38.11 37.69 -0.04 188.81 -159.37 41.89 

4.62 4.16 10.39 11.49 17.71 17.08 24.25 35.66 28.87 28.30 -29.05 61.09 156.73 173.03 

11.55 11.74 23.10 23.52 33.49 33.44 39.27 29.44 42.73 43.33 4.98 426.03 -521.37 29.92 

12.32 11.57 23.48 24.87 33.11 34.28 39.65 39.68 43.12 43.37 -11.42 66.05 74.48 92.09 
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are determined with constant rate of elongation (or strain):  
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d
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2
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1)( 2
2.2 teBAt

t
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The total force loading the monofilament takes the form of: 
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2
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2
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2
22 nCbeeatytF

tt  (17) 
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force acting on filament can be registered as a function of time. 
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2
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(19) 

To simplify previous equation we can introduce: 
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2
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0
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o
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500 

1.64 1.91 3.18 3.15 5.45 5.42 7.09 7.08 8.18 8.23 1.34 45.76 -53.88 5.42 

1.80 1.90 3.60 3.42 5.67 5.57 7.38 7.34 8.55 8.48 -2.63 15.88 12.90 20.58 

1.89 1.93 3.69 3.68 5.67 5.64 7,11 7.04 8.37 8.26 2.83 202.34 -336.59 1.31 

1.71 1.40 3.33 3.18 5.49 5.14 7.38 6.99 8.64 8.50 -8.19 21.00 38.47 46.74 

1.44 1.44 3.06 3.09 5.22 5.23 6.84 6.90 8.10 8.20 2.56 55.53 -78.78 2.05 
 
Table 2.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN=0.30 mm loading with the 
rate of V=5; 50; 500 mm/min at the strain to 15 % 
Speed, 
mm/min 

Force, N Coefficients equation 
F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) y a b C2n 

5 

8.46 8.55 16.15 15.98 22.31 22.19 26.92 28.84 30.38 30.42 0.046 25.61 22.58 22.84 

7.69 7.78 15.38 15.21 21.54 21.42 26.15 26.07 29.61 29.65 0.046 25.61 22.58 22.07 

7.69 7.78 15.38 15.21 21.54 21.42 26.15 26.07 29.61 29.65 0.046 25.61 22.58 22.07 

8.08 8.51 16.15 16.79 22.31 22.29 26.92 27.50 30.00 30.42 -0.0052 9.11 55.21 40.45 

7.69 7.55 15.38 14.90 21.92 21.43 26.54 26.08 30.00 29.66 0.068 94.31 -70.98 15.52 

50 

8.08 7.87 16.54 16.42 23.85 23.83 28.46 28.63 32.31 32.73 1.06 1178.06 -1895.67 9.24 

8.46 8.23 16.92 16.72 24.23 24.14 28.85 28.84 32.69 32.72 0.99 1018.22 -1606.15 10.80 

8.46 8.39 16.92 16.96 23.85 23.69 28.46 28.18 32.31 31.97 0.96 594.12 -862.92 10.72 

8.85 8.79 16.92 16.99 23.85 23.73 28.46 28.25 32.31 32.04 0.96 614.19 -914.65 10.79 

8.46 8.52 16.15 16.38 23.46 23.41 28.46 28.39 32.31 32.23 0.87 252.48 -325.69 13.20 

500 

5.00 5.97 13.86 13.68 25.02 25.12 33.11 32.93 38.11 38.12 0.98 156.84 -115.52 40.76 

6.93 6.93 15.78 15.78 26.56 26.32 33.88 33.95 38.11 37.69 -0.04 188.81 -159.37 41.89 

4.62 4.16 10.39 11.49 17.71 17.08 24.25 35.66 28.87 28.30 -29.05 61.09 156.73 173.03 

11.55 11.74 23.10 23.52 33.49 33.44 39.27 29.44 42.73 43.33 4.98 426.03 -521.37 29.92 

12.32 11.57 23.48 24.87 33.11 34.28 39.65 39.68 43.12 43.37 -11.42 66.05 74.48 92.09 
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Table 3.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN = 0.45 mm loading with 
the rate of V = 5; 50; 500 mm/min at the strain to 15 % 

Speed, 
mm/min 

Force, N Coefficients equation 

F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) y a b C2n 

5 

15.38 14.78 32.31 32.10 44.61 44.45 53.08 52.83 60.00 59.97 0.17 337.33 -322.21 23.22 

15.38 16.98 33.85 35.73 47.69 48.11 56.92 56.66 63.08 62.71 0.063 108.11 20.22 52.51 

15.38 13.38 32.31 31.21 45.38 45.39 53.85 53.87 61.54 61.31 0.20 7858.99 -13573.92 17.70 

15.38 14.92 32.31 32.24 44.61 44.59 53.08 52.97 60.00 60.11 0.17 337.33 -322.21 23.36 

13.85 14.21 30.00 30.03 43.08 42.66 52.31 51.58 59.23 58.27 0.12 162.12 -90.23 33.58 

50 

15.26 15.53 33.68 33.93 48.42 48.61 58.42 58.50 66.84 66.86 1.96 1049.38 -1469.77 19.98 

16.31 16.35 34.21 34.10 48.95 48.72 57.89 57.20 64.74 63.54 1.38 1200.28 -1696.0 30.68 

15.79 15.82 33.68 33.59 48.42 48.59 57.89 58.06 65.26 65.55 1.65 804.08 -1070.75 26.27 

15.12 15.00 32.56 32.53 46.51 46.56 55.81 55.59 63.95 63.36 2.02 2761.54 -4433.37 18.58 

14.74 15.24 32.10 32.24 45.79 45.98 54.74 54.87 62.63 62.68 2.05 3318.05 -5411.89 17.21 

500 

9.23 9.64 23.08 22.95 47.69 48.64 63.08 65.37 75.38 79.13 26.33 4375.55 -7929.26 1.92 

6.15 8.25 22.31 22.51 47.69 48.02 64.61 64.79 72.31 71.08 -15.18 461.93 -343.25 133.44 

12.31 12.68 33.85 36.23 53.85 53.69 66.92 66.79 73.85 73.32 -8.4 216.25 -24.49 110.00 

9.23 7.94 25.38 25.07 49.23 49.03 66.15 66.79 76.92 79.22 10.00 476.26 -537.77 57.01 

10.77 11.76 32.31 30.07 53.85 53.85 66.92 66.39 70.77 69.35 -44.69 264.06 92.38 231.93 
 
 
 
 
Table 4.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN=0.15 mm loaded with the 
rate of V=5; 50 mm/min at the strain to 15 % and then subjected to relaxation 
Speed, mm/min Force, N Coefficients equation 

F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) z a b C2n 

 
 
5 

5.09 5.09 3.64 3.64 2.36 2.37 1.45 1.46 0.73 0.74 0.023 -30.90 34.55 4.32 

4.91 4.91 3.45 3.45 2.27 2.28 1.45 1.47 0.73 0.76 0.026 -136.60 207.47 4.85 

4.73 4.70 3.27 3.27 2.18 2.20 1.45 1.50 0.91 0.98 0.015 -16.60 9.99 3.23 

5.00 5.00 3.55 3.56 2.45 2.46 1.73 1.75 1.09 1.11 0.024 -324.03 531.49 4.83 

4.73 4.70 3.27 3.27 2.18 2.20 1.45 1.50 0.91 0.98 0.015 -16.60 9.99 3.23 

 
 
50 

5.82 5.81 3.91 3.90 2.45 2.45 1.45 1.45 0.73 0.73 0.15 -14.44 3.53 3.21 

5.45 5.50 3.82 3.86 2.55 2.57 1.64 1.65 0.91 0.84 0.24 -20.22 15.28 4.51 

5.91 5.91 4.09 4.09 2.64 2.64 1.73 1.73 1.09 1.09 0.18 -39.64 39.82 3.86 

5.91 5.91 4.18 4.18 2.73 2.73 1.82 1.82 1.09 1.08 0.26 -145.50 217.34 5.14 

6.18 6.19 4.36 4.37 2.91 2.92 1.91 1.91 1.18 1.18 0.19 -17.69 9.18 3.96 

 

 5

 
Fig. 3. The values of the empirical and theoretical forces and the 
values of equation coefficients of the filament PP, dN=0.15 mm 
loaded with the rate of V=50 mm/min at the strain to 15 % and 
then subjected to relaxation 
 
 
3.4. Conclusions  
 

On the basis of conducted examinations the following 
conclusions can be drawn: 
1. The proposed model represents adequately stress – strain 

relationships of polypropylene monofilaments subjected to 
tensile test.  

2. Derived model precisely describes the relaxation phenomenon 
of investigated monofilaments conducted during 180 sec. 

  
 

4. Description of the rheological 
properties of PP nonwovens subjected 
to the compression loads 
 

To describe the rheological properties of polypropylene 
nonwovens the rheological model presented in Fig. 1. was 
modified assuming the weight of piston as equal to zero.  
 
 
4.1.The analytical solution of  rheological 
equations  
 

During the model straining the compression force F is 
resolved into force F1 acting in the element I and into the force F2 
acting in the element II. It is assumed that force F acting upon 
samples is proportional to the strain  till the limit value 0 (limit 
of proportionality) is reached. The measurements show, that after 
straining in the interval 0<  <  0 residual strains of sample are not 
observed. In this phase of compression the force in the element I 
equals to:  

11 CF  (22) 
 
 

and in the element II equals to: 
22 CF  (23) 

As long as F2 < T, where  is the strain of model, the total 
force loading the model is: 

CCCFFF )( 2121
 (24) 

where C is the total stiffness of model equals to C1 + C2.  When 
the load in segment II reaches the value T=C2ut0, the piston 
begins to move downwards in viscous liquid with the velocity 

2.222

2.22.222

2.222.2

)(
        

)(

KCTC

KTCC

KTF
dt

d

 (25) 

The rate of increase of model strain depends on the used 
tester. According to present standards, the stress-strain testers 
should work with constant rate of deformation i.e.: 

ut   (26) 
where u- is speed of motion of a compression food, and t- is time 
of motion of a foot.  If we introduce this value to equation (25) we 
receive 

2.2222.2 )( KCTutC
dt

d  (27) 

The integral of this equation is 
0

10
2

2
2.2

tt

ett
KC

uC  (28) 

where time of relaxation is expressed by equation 

KC2

 (29) 

and to is time at the limit of proportionality. 
 

The load acting upon the model can be expressed as: 
2222121 CutCutCFFF  (30) 
 

and substituting to equation (30) the formula (28) we have: 

)1(0
2

2
2

Ott

ett
KC

uCCutF  (31) 

For practical use the equation (31) can be presented in simpler 
form of:  

)1(0

Ott

ettAuCutF  (32) 

where: 

KC
CA

2

2  (33) 

or  

R
XX

11

0

DeBXAY  (34) 
where: 

ACuA1  (35) 
01 tAuB  (36) 

AuD1  (37) 
FY  (38) 
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Table 3.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN = 0.45 mm loading with 
the rate of V = 5; 50; 500 mm/min at the strain to 15 % 

Speed, 
mm/min 

Force, N Coefficients equation 

F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) y a b C2n 

5 

15.38 14.78 32.31 32.10 44.61 44.45 53.08 52.83 60.00 59.97 0.17 337.33 -322.21 23.22 

15.38 16.98 33.85 35.73 47.69 48.11 56.92 56.66 63.08 62.71 0.063 108.11 20.22 52.51 

15.38 13.38 32.31 31.21 45.38 45.39 53.85 53.87 61.54 61.31 0.20 7858.99 -13573.92 17.70 

15.38 14.92 32.31 32.24 44.61 44.59 53.08 52.97 60.00 60.11 0.17 337.33 -322.21 23.36 

13.85 14.21 30.00 30.03 43.08 42.66 52.31 51.58 59.23 58.27 0.12 162.12 -90.23 33.58 

50 

15.26 15.53 33.68 33.93 48.42 48.61 58.42 58.50 66.84 66.86 1.96 1049.38 -1469.77 19.98 

16.31 16.35 34.21 34.10 48.95 48.72 57.89 57.20 64.74 63.54 1.38 1200.28 -1696.0 30.68 

15.79 15.82 33.68 33.59 48.42 48.59 57.89 58.06 65.26 65.55 1.65 804.08 -1070.75 26.27 

15.12 15.00 32.56 32.53 46.51 46.56 55.81 55.59 63.95 63.36 2.02 2761.54 -4433.37 18.58 

14.74 15.24 32.10 32.24 45.79 45.98 54.74 54.87 62.63 62.68 2.05 3318.05 -5411.89 17.21 

500 

9.23 9.64 23.08 22.95 47.69 48.64 63.08 65.37 75.38 79.13 26.33 4375.55 -7929.26 1.92 

6.15 8.25 22.31 22.51 47.69 48.02 64.61 64.79 72.31 71.08 -15.18 461.93 -343.25 133.44 

12.31 12.68 33.85 36.23 53.85 53.69 66.92 66.79 73.85 73.32 -8.4 216.25 -24.49 110.00 

9.23 7.94 25.38 25.07 49.23 49.03 66.15 66.79 76.92 79.22 10.00 476.26 -537.77 57.01 

10.77 11.76 32.31 30.07 53.85 53.85 66.92 66.39 70.77 69.35 -44.69 264.06 92.38 231.93 
 
 
 
 
Table 4.  
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dN=0.15 mm loaded with the 
rate of V=5; 50 mm/min at the strain to 15 % and then subjected to relaxation 
Speed, mm/min Force, N Coefficients equation 

F1(.e) F1(.t) F2(.e) F2(.t) F3(.e) F3(.t) F4(.e) F4(.t) F5(.e) F5(.t) z a b C2n 

 
 
5 

5.09 5.09 3.64 3.64 2.36 2.37 1.45 1.46 0.73 0.74 0.023 -30.90 34.55 4.32 

4.91 4.91 3.45 3.45 2.27 2.28 1.45 1.47 0.73 0.76 0.026 -136.60 207.47 4.85 

4.73 4.70 3.27 3.27 2.18 2.20 1.45 1.50 0.91 0.98 0.015 -16.60 9.99 3.23 

5.00 5.00 3.55 3.56 2.45 2.46 1.73 1.75 1.09 1.11 0.024 -324.03 531.49 4.83 

4.73 4.70 3.27 3.27 2.18 2.20 1.45 1.50 0.91 0.98 0.015 -16.60 9.99 3.23 

 
 
50 

5.82 5.81 3.91 3.90 2.45 2.45 1.45 1.45 0.73 0.73 0.15 -14.44 3.53 3.21 

5.45 5.50 3.82 3.86 2.55 2.57 1.64 1.65 0.91 0.84 0.24 -20.22 15.28 4.51 

5.91 5.91 4.09 4.09 2.64 2.64 1.73 1.73 1.09 1.09 0.18 -39.64 39.82 3.86 

5.91 5.91 4.18 4.18 2.73 2.73 1.82 1.82 1.09 1.08 0.26 -145.50 217.34 5.14 

6.18 6.19 4.36 4.37 2.91 2.92 1.91 1.91 1.18 1.18 0.19 -17.69 9.18 3.96 

 

 5

 
Fig. 3. The values of the empirical and theoretical forces and the 
values of equation coefficients of the filament PP, dN=0.15 mm 
loaded with the rate of V=50 mm/min at the strain to 15 % and 
then subjected to relaxation 
 
 
3.4. Conclusions  
 

On the basis of conducted examinations the following 
conclusions can be drawn: 
1. The proposed model represents adequately stress – strain 

relationships of polypropylene monofilaments subjected to 
tensile test.  

2. Derived model precisely describes the relaxation phenomenon 
of investigated monofilaments conducted during 180 sec. 

  
 

4. Description of the rheological 
properties of PP nonwovens subjected 
to the compression loads 
 

To describe the rheological properties of polypropylene 
nonwovens the rheological model presented in Fig. 1. was 
modified assuming the weight of piston as equal to zero.  
 
 
4.1.The analytical solution of  rheological 
equations  
 

During the model straining the compression force F is 
resolved into force F1 acting in the element I and into the force F2 
acting in the element II. It is assumed that force F acting upon 
samples is proportional to the strain  till the limit value 0 (limit 
of proportionality) is reached. The measurements show, that after 
straining in the interval 0<  <  0 residual strains of sample are not 
observed. In this phase of compression the force in the element I 
equals to:  

11 CF  (22) 
 
 

and in the element II equals to: 
22 CF  (23) 

As long as F2 < T, where  is the strain of model, the total 
force loading the model is: 

CCCFFF )( 2121
 (24) 

where C is the total stiffness of model equals to C1 + C2.  When 
the load in segment II reaches the value T=C2ut0, the piston 
begins to move downwards in viscous liquid with the velocity 

2.222

2.22.222

2.222.2

)(
        

)(

KCTC

KTCC

KTF
dt

d

 (25) 

The rate of increase of model strain depends on the used 
tester. According to present standards, the stress-strain testers 
should work with constant rate of deformation i.e.: 

ut   (26) 
where u- is speed of motion of a compression food, and t- is time 
of motion of a foot.  If we introduce this value to equation (25) we 
receive 

2.2222.2 )( KCTutC
dt

d  (27) 

The integral of this equation is 
0

10
2

2
2.2

tt

ett
KC

uC  (28) 

where time of relaxation is expressed by equation 

KC2

 (29) 

and to is time at the limit of proportionality. 
 

The load acting upon the model can be expressed as: 
2222121 CutCutCFFF  (30) 
 

and substituting to equation (30) the formula (28) we have: 

)1(0
2

2
2

Ott

ett
KC

uCCutF  (31) 

For practical use the equation (31) can be presented in simpler 
form of:  

)1(0

Ott

ettAuCutF  (32) 

where: 

KC
CA

2

2  (33) 

or  

R
XX

11

0

DeBXAY  (34) 
where: 

ACuA1  (35) 
01 tAuB  (36) 

AuD1  (37) 
FY  (38) 

3.4.	�Conclusions

4.	�Description of the 
rheological properties of 
PP nonwovens subjected to 
the compression loads
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tX  (39) 
R  (40) 

Both simpler forms of the equation (31) can be used for 
verification of theoretical considerations concerning the 
prediction of the load-deformation curves during the compression 
of non-woven fabrics. In presented paper the method of non-linear 
least square method was used to find the coefficients of the 
equation (34).  
 
The model describing the relaxation phenomena 

Stopping the instrument at the moment t1 ,we allowed the 
material to undergo stress relaxation. At this moment, the 
deformation of the sample was equal to deformation of spring in 
element I. The force in element I was not changing in a period of 
time of relaxation, while the force in element II was diminishing. 
The decrease of the value of force F2 results from the recovery of 
the compressed spring in element II due to the downward 
movement of piston joined with spring II. The recovery of spring 
II can be realised till the moment of equilibrium of the value of 
force F2 with the value of friction force T. The displacement of 
the piston in viscous fluid can be described by the equation: 

22.2 F
dt

d  (41) 

At the moment of t1 the shift of a piston was equal to: 

TtuC
etuCT

KC

tt

12

1

02

2
2.2

011  (42) 

The force resulting from the piston movement F2vp can be 
determined by equation (43): 

TKCtFF 2.22122
 (43) 

Introducing the equation (43) to formula (41) we have:  

2.2
2122.2 KCT)t(C

dt
d  (44) 

Integral of this equation is:  

KC
TtCe

KC
TtC tt

2

12

2

12
1.2.22.2

)()( 1  (45) 

Determination of equation (45) allows for the definition of the 
force F during the relaxation in a form of equation (46):   

KC
TtCe

KC
TtCC

CutCtCF
ttt

2

12

2

12
1.2.22

12.221

)()(

)(
 (46) 

Introducing to the equation (46) the following formulae: 

1
2

12
22 Cut

KC
T)t(CCB  (47) 

KC
T)t(CCD

2

12
1.2.221

 (48) 

we can reduce the equation (46) to a form of:  
tt

22

1

eDBF  (49) 
Simplified form of equation (46) was used for verification of 

theoretical consideration on the relaxation of non-woven fabric 
after compression. The non-linear least square method was used 
to fit the parameters of model equation (50) using computer 
NCSS 6.0 

XX

22

1

eDBY  (50)  

Recovery after compression 
 At the moment  tr the compression food changes its direction. 
At that moment the recovery process after compression begins. In 
both elements of model the linear recovery of springs I and II is 
observed and the elastic deformations resulting from compression 
of tested non-woven fabrics are reversed. When the force in 
element II equals to friction force T the upward movement of 
piston begins what results in non-linear recovery of force. In 
element I the force is proportional to the deformation of model, 
therefore we have: 
 

tuutttuutc 222 2
 (51)

 

 The force in element I can be defined by the formula  (31) 
tuutCCF c 2111 2  (52) 

and the force in element II is equal to: 
2.22222.2222 2 CtuutCCCF c  (53) 

The displacement of piston ε2.2 can be expressed by the 
following equation: 

2.222.2 KTF
dt

d

 (54)
 

 The solution of differential equation (54) is given in a form of 

tt

euut

utuut
2

22.2.2

2

2.2
1

2

1
1

 (55) 
The total force acting on a model during the recovery process 

can be defined from the following formulae: 

21 FFF  (56) 
tuutCF 211 2  (57 

2.22222 2 CtuutCF  (58) 

tt

euut

tuuutzC

CtuutCF

2

22.2.2

2

2

1

2

1

2

 (59)
 

Substituting to equation (59) the following of expressions:  
utP 2  (60) 

uP1W 2.2.2  (61) 

1
uz

1
z1P2CQ

 (62) 

G
1

CzS
 (63) 

uR  (64) 
we have the final equation describing the recovery process of 
tested non-woven fabrics in a form of : 

R
utPexpWStuQF

 (65) 
The equation (65) was introduced to computer program 

NCSS6.0 in a form of : 
XtDXBAY 2

333 exp  (66) 

 

 7

where: 
QA3

 (67) 
SuB3  (68) 
WD3  (69) 

and the values of parameters of model equation were fitted using 
the non-linear least square method.  
 
4.2. Procedure of model verification  
 
 Based on the above equations describing the shape of the 
elastic recovery curve it is possible to calculate the rheological 
properties of investigated type of nonwovens under the stress-
recovery test. 

Using the non-linear least squares method it is necessary to 
calculate the value of  fitting the equation of the relaxation 
curve to experimental data. Basing on the value of  which was 
found from the equation describing the relaxation curve and 
experimental points of the elastic recovery curve it is necessary 
to fit the equation 5 finding the value of A, B and C.  
 
4.3. Experiment 
 

The verification of proposed model was completed using 
three various types of nonwoven samples. All samples were 
manufactured using needle-punching technology. The 
nonwovens were prepared from polypropylene fibres of linear 
density equals to 6.7, 12, 18 dtex and length equals to 60 mm. 
The area mass of nonwovens was approximately equals to  
400 g/m2. The prepared samples were investigated under 
compression load using Instron tester. All samples were 
compressed to the pressure equals to 0.0247 N/mm2 with the 
speed of 5 mm/min. The characteristics of test material are 
presented in Table 5.  
 
Table 5.  
Design of experiment 

Type  
of 
fibre 

Linear 
density 
[dtex] 

Length 
 of fibre 
[mm] 

Depth  
of needle 
punching 
[mm] 

Number  
of needle 
punching 
[1/cm2] 

PP 
6.7 
12 
18 

60 14 
100 
130 
160 

 
In order to carry out the verification the value of t0, t1, t2 was 

calculated for each set of investigations. Based on the set of 
experimental data the constant values of equations of 
compression, relaxation, and recovery: A1, A3, B1, B2, B3, D1, D2, 
D3 and  were evaluated using method of Levenberg-Marquardt. 
The example of the shape of theoretical and experimental curves 
for all types of designs is presented in Figs. 4 a-c. Next the 
correlation between the experimental data and data from the 
theoretical model were evaluated. The values of correlation 
coefficients are given in Table 6. 

 

4.4. Conclusions 
 
 The results presented in Table 6 indicate that for each 
investigated type of nonwovens there is no significant difference 
between the shape of the theoretical and experimental elastic 
recovery curve during the recovery test (as shown in Fig. 4). For 
all variants of nonwovens the correlation coefficient between 
experimental and theoretical data is between 0.883 to 0.947. 
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Fig. 4. Example of the verification of the compression, the 
relaxation and the elastic recovery curves for PP nonwovens 
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tX  (39) 
R  (40) 

Both simpler forms of the equation (31) can be used for 
verification of theoretical considerations concerning the 
prediction of the load-deformation curves during the compression 
of non-woven fabrics. In presented paper the method of non-linear 
least square method was used to find the coefficients of the 
equation (34).  
 
The model describing the relaxation phenomena 

Stopping the instrument at the moment t1 ,we allowed the 
material to undergo stress relaxation. At this moment, the 
deformation of the sample was equal to deformation of spring in 
element I. The force in element I was not changing in a period of 
time of relaxation, while the force in element II was diminishing. 
The decrease of the value of force F2 results from the recovery of 
the compressed spring in element II due to the downward 
movement of piston joined with spring II. The recovery of spring 
II can be realised till the moment of equilibrium of the value of 
force F2 with the value of friction force T. The displacement of 
the piston in viscous fluid can be described by the equation: 

22.2 F
dt

d  (41) 

At the moment of t1 the shift of a piston was equal to: 

TtuC
etuCT

KC

tt

12

1

02

2
2.2

011  (42) 

The force resulting from the piston movement F2vp can be 
determined by equation (43): 

TKCtFF 2.22122
 (43) 

Introducing the equation (43) to formula (41) we have:  

2.2
2122.2 KCT)t(C

dt
d  (44) 

Integral of this equation is:  

KC
TtCe

KC
TtC tt

2

12

2

12
1.2.22.2

)()( 1  (45) 

Determination of equation (45) allows for the definition of the 
force F during the relaxation in a form of equation (46):   

KC
TtCe

KC
TtCC

CutCtCF
ttt

2

12

2

12
1.2.22

12.221

)()(

)(
 (46) 

Introducing to the equation (46) the following formulae: 

1
2

12
22 Cut

KC
T)t(CCB  (47) 

KC
T)t(CCD

2

12
1.2.221

 (48) 

we can reduce the equation (46) to a form of:  
tt

22

1

eDBF  (49) 
Simplified form of equation (46) was used for verification of 

theoretical consideration on the relaxation of non-woven fabric 
after compression. The non-linear least square method was used 
to fit the parameters of model equation (50) using computer 
NCSS 6.0 

XX

22

1

eDBY  (50)  

Recovery after compression 
 At the moment  tr the compression food changes its direction. 
At that moment the recovery process after compression begins. In 
both elements of model the linear recovery of springs I and II is 
observed and the elastic deformations resulting from compression 
of tested non-woven fabrics are reversed. When the force in 
element II equals to friction force T the upward movement of 
piston begins what results in non-linear recovery of force. In 
element I the force is proportional to the deformation of model, 
therefore we have: 
 

tuutttuutc 222 2
 (51)

 

 The force in element I can be defined by the formula  (31) 
tuutCCF c 2111 2  (52) 

and the force in element II is equal to: 
2.22222.2222 2 CtuutCCCF c  (53) 

The displacement of piston ε2.2 can be expressed by the 
following equation: 

2.222.2 KTF
dt

d

 (54)
 

 The solution of differential equation (54) is given in a form of 

tt

euut

utuut
2

22.2.2

2

2.2
1

2

1
1

 (55) 
The total force acting on a model during the recovery process 

can be defined from the following formulae: 

21 FFF  (56) 
tuutCF 211 2  (57 

2.22222 2 CtuutCF  (58) 

tt

euut

tuuutzC

CtuutCF

2

22.2.2

2

2

1

2

1

2

 (59)
 

Substituting to equation (59) the following of expressions:  
utP 2  (60) 

uP1W 2.2.2  (61) 

1
uz

1
z1P2CQ

 (62) 

G
1

CzS
 (63) 

uR  (64) 
we have the final equation describing the recovery process of 
tested non-woven fabrics in a form of : 

R
utPexpWStuQF

 (65) 
The equation (65) was introduced to computer program 

NCSS6.0 in a form of : 
XtDXBAY 2

333 exp  (66) 

 

 7

where: 
QA3

 (67) 
SuB3  (68) 
WD3  (69) 

and the values of parameters of model equation were fitted using 
the non-linear least square method.  
 
4.2. Procedure of model verification  
 
 Based on the above equations describing the shape of the 
elastic recovery curve it is possible to calculate the rheological 
properties of investigated type of nonwovens under the stress-
recovery test. 

Using the non-linear least squares method it is necessary to 
calculate the value of  fitting the equation of the relaxation 
curve to experimental data. Basing on the value of  which was 
found from the equation describing the relaxation curve and 
experimental points of the elastic recovery curve it is necessary 
to fit the equation 5 finding the value of A, B and C.  
 
4.3. Experiment 
 

The verification of proposed model was completed using 
three various types of nonwoven samples. All samples were 
manufactured using needle-punching technology. The 
nonwovens were prepared from polypropylene fibres of linear 
density equals to 6.7, 12, 18 dtex and length equals to 60 mm. 
The area mass of nonwovens was approximately equals to  
400 g/m2. The prepared samples were investigated under 
compression load using Instron tester. All samples were 
compressed to the pressure equals to 0.0247 N/mm2 with the 
speed of 5 mm/min. The characteristics of test material are 
presented in Table 5.  
 
Table 5.  
Design of experiment 

Type  
of 
fibre 

Linear 
density 
[dtex] 

Length 
 of fibre 
[mm] 

Depth  
of needle 
punching 
[mm] 

Number  
of needle 
punching 
[1/cm2] 

PP 
6.7 
12 
18 

60 14 
100 
130 
160 

 
In order to carry out the verification the value of t0, t1, t2 was 

calculated for each set of investigations. Based on the set of 
experimental data the constant values of equations of 
compression, relaxation, and recovery: A1, A3, B1, B2, B3, D1, D2, 
D3 and  were evaluated using method of Levenberg-Marquardt. 
The example of the shape of theoretical and experimental curves 
for all types of designs is presented in Figs. 4 a-c. Next the 
correlation between the experimental data and data from the 
theoretical model were evaluated. The values of correlation 
coefficients are given in Table 6. 

 

4.4. Conclusions 
 
 The results presented in Table 6 indicate that for each 
investigated type of nonwovens there is no significant difference 
between the shape of the theoretical and experimental elastic 
recovery curve during the recovery test (as shown in Fig. 4). For 
all variants of nonwovens the correlation coefficient between 
experimental and theoretical data is between 0.883 to 0.947. 
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Fig. 4. Example of the verification of the compression, the 
relaxation and the elastic recovery curves for PP nonwovens 
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Table 6.  
The list of correlation coefficients 

Type of 
fibres 

Number 
of needle 
punching 
[l/cm2] 

 
Correlation 

coefficient of 
compression 

 
Correlation 

coefficient of 
relaxation 

Correlation 
coefficient of 
recovery 

PP6,7/60 
100 
130 
160 

0.981 
0.922 
0.922 

0.988 
0.986 
0.987 

0.898 
0.906 
0.924 

PP12/60 
100 
130 
160 

0.987 
0.995 
0.992 

0.986 
0.984 
0.985 

0.903 
0.899 
0.883 

PP18/60 
100 
130 
160 

0.988 
0.997 
0.999 

0.987 
0.983 
0.984 

0.928 
0.947 
0.941 
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