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ABSTRACT

Purpose: In order to describe the rheological properties of textile products there have been used various models
but none of them delivers the complementary solution for textiles subjected to different fields of loads. Therefore
the idea presented by Hasley in 1945 was an inspiration for us to propose the new rheological model based on
theory of plastic-elastic solids.

Design/methodology/approach: It was assumed that the modified rheological model would consist of two
parallel parts: I - Hooke’s spring with rigidity C; and II - Hooke’s spring with rigidity C,, connected in series
with a frictional element with a constant resistance, T and additional force Ke,,, and a piston with a weight m
displacing in a liquid with a viscosity 1, where &,, is a shift of the piston from its initial position.

Findings: The proposed model represents adequately stress — strain relationships of polypropylene monofilaments
subjected to tensile test. The results indicate that for each investigated type of nonwovens there is no significant
difference between the shape of the theoretical and experimental elastic recovery curve during the recovery test.
Research limitations/implications: The application of presented model was used for illustration of the
description of relaxation of polypropylene monofilament subjected to tensile load and rheological properties of
non-woven fabrics made also from polypropylene fibres subjected to the compression loads.
Originality/value: The new rheological model was proposed. It can be universal for description of mechanical
behaviour of textiles subjected to the tension or compression loads.
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1. Introduction

In order to describe the rheological properties of textile
products, there have been used various models [1— 22]. One of the
firsts was Voigt-Kelvin’s model [1] that fails however to show
relaxation at a constant strain. Another one was Zener’s model
[4, 5] describing the relaxation phenomenon, but based on the
relaxation curve, constant values of the model rheological
parameters could not be determined for linear textile products.
The next modification was Vangheluwe’s model [14-16], in
which one of Hooke’s elements with a linear character was
replaced by a spring with non-linear characteristics. This model is
capable of describing the stress-strain curve and the relaxation
curve, but it still does not contain Saint-Venant’s element being
responsible for plastic strains after exceeding the limiting force.
This lack is made up in Hoffman’s model [8] where Zener’s
model is combined with Bingham’s element. Zener’s model is
responsible for visco-elastic strains, while Bingham’s element is
responsible for the representation of plastic strains. In further
investigations, this model was modified by replacing Newton’s
dumper in Binghman’s element with Eyring’s dumper [17]. Thus,
the studies headed for the introduction of a successive element
with non-linear characteristics. In this case, there was obtained a
non-linear differential equation with no analytical solution. It
seems that the lack of complementary description of the
rheological properties of linear textile products resulted from the
fact that no inertial member was taken into account. Already in
1945, Halsey wrote [2]: “In general, in the theory of plastic-elastic
solids it has been customary to consider these solids as being
dependent on linear differential equations of type:

ag; +bq, +cq, =0,

In this equation q is a generalized displacement from
equilibrium, Q represents external forces, a is an inertial term
(...), ¢ is a potential term determining the action of the spring,
while b is a viscosity...”

The idea of Hasley was an inspiration for us to propose the
new rheological model, which can be universal for description of
mechanical behaviour of textiles subjected to the tension or
compression loads.

2. The idea of model

It was assumed that the modified rheological model would

consist of two parallel parts:

I - Hooke’s spring with rigidity C,,

II - Hooke’s spring with rigidity C,, connected in series with a
frictional element with a constant resistance, T and additional
force Ke,,, and a piston with a weight m displacing in a liquid
with a viscosity 1, where &, is a shift of the piston from its initial
position.

The use of springs with rigidities C; and C, in the initial phase
should reflect the linear-elastic behaviour of the object under
testing. Once the critical value of tensile stress is exceeded, a
further part of the model connected with the inertial-frictional
element is actuated. The function of this system is to reflect visco-
elastic strains through the use of Newton dumper in the
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arrangement with springs C,and C,, and the plastic strains
realized through Saint-Venant’s element. The parallel connection
of dumper and Saint-Venant’s element, and the mass allows an
approximate reflection of the phenomena described in the work
by Eyring where a dumper with non-linear characteristics was
used. The scheme of the model is presented in Fig.1.

TF

Fig. 1. Zurek's rheological model

The application of presented model was used for illustration
of the description of relaxation of polypropylene monofilament
subjected to tensile load and rheological properties of non-woven
fabrics made also from polypropylene fibres subjected to the
compression loads.

3. The description of
the relaxation of PP
monofilaments according to
Zurek’s rheological model

3.1. The analytical solution
of relaxation equation

At the strain € of model the force in the link I is:

F, =C,e=C,ut 1)
Where u is the rate of straining of model and in the link II:
F, =C,e=Cyut 2

provided the force F,<T (or C,e<T).

After the force acting in the link II surpasses the value T, the
force acting in this link can be expressed as:
F, :Cz(g_gz.z)zczm_czgz,z 3)

Where ¢, , is intrinsic strain in the link II.
After the force in the link II reaches value T, piston begins to
move with the rate:

de,, F,
dt - n (4)
but the force F, is now diminished by (T+Ke,,) and inertial force:
m d’e,, (5)
dt’

Therefore we have:
d’e,, (6)

F, :Cz(g_gz.z)_T_ng.z —-m ar
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Putting this value into previous equation we receive:

de,, 1 d’e,, @)
d :; Cz(‘g—gz.z)_T_K‘gz.z_m a’

and after simple transformation:
2

Aoy 1 ey CK G T ®)

dr* m dt m m m
According to present standards the load — elongation curves
are determined with constant rate of elongation (or strain):

k =u = const (9)
dt

To simplify previous equation we can introduce:
7 C + K E —
m m m (10)
and we receive equatlon:
d’ey, de an

e +aﬁ+ﬂgz.z =yn-¢

The resolution of this equation depends on the value:
A=a’-4p

(12)
If A= 0 we have:
=(At+ B)eT + L (% + (pj
B B p (13)
The total force loading the monofilament takes the form of:
F = F,+F, = Cut + Cyut — C,¢,, = Cut — C,&,, (14)
and
F:(CM—CZZ}—CZA:{Z _C,Be? +C[—+¢7J (13
B B B
To simplify equation (15) we can introduce:
Cu-0C, l=y; C,A=a; C2B=b;(%+ w]l=n
2 p")p (16)
and the force during the loading phase can be calculated as:
F:yt—atei?Z—b877’+nC2 a7

At the moment t, the straining is stopped and the changes of
force acting on filament can be registered as a function of time.
At the moment t, the force acting upon the filament is equal to:

Y -
F:(Cu—szJZO—CZAtUe2 (18)

S 1
~C,Be ° +c2[ﬂi+ (ojﬂ

and in a case of u=0 we have:

Ft>t,)=-C, ﬂ LG-1,)
. (19)
A -1,)e 2 Z e )
+C, [% + @ j L
B B
To simplify previous equation we can introduce:
c, Y=z Cc,a=a;C,B=b; (%+ q)Jl:n (20)
B B B
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Therefore the force during the relaxation phase can be
calculated as:

F(>ty)=-z@-t,)-alt-1¢, )ei%(m") @21

— be R + nC ,

3.2. Experiment

The verification of proposed model was completed using three
type of polypropylene monofilaments of different diameter of
dn=0.15; 0.30; 0.45 mm. The loading phase and relaxation phase
was completed using Instron tester series 4204. Each type of
monofilaments was subjected to the tensile test with the speed of
5,50 and 500 mm/min till the strain of 15%. Next the samples
were subjected to the relaxation during the 180 sec.

3.3. Test results

The results of the empirical values of tensile forces and
calculated according to the equation (17) for each type of
monofilaments subjected to the tensile test with the speed equal to
5,50 and 500 mm/min are given in Tables 1-3. For each variant
five samples were tested. The empirical values Fj of tensile
force were determining for five points selected within interval
equal to 36.36 s for speed of 5 mm/min , 4.07 s for speed of
50 mm/min and 0.45 s for 500 mm/min. Next, after solution of
simultaneous equations coefficients of equation (18) were
calculated and the theoretical values of Fj.) were determined. All
calculation is given in Tables 1-3. In the second part of
investigation the simultaneous equations for relaxation was solved
similar like for tension curve. Empirical and theoretical value of
relaxation curve was determined. Example of calculations is given
in table 4 the result are illustrated at Figs. 2-3. The empirical and
theoretical forces calculated for relaxation phase according to
equation (21) for the monofilaments of diameter of 0.15 mm are
given in Table 4.

Example of relaxation graph of PP filament about diameter
dy = 0.45 mm, using different speed of travel cross-beam V =5,
50, 500 mm/min show Figs. 2-3.

6
5 M
-4
64
g
o3
21 — The values of the empirical forces
14 ® The values of the theoretical forces
0 T T T 1
0 50 100 150 200

Time, s

Fig. 2. The values of the empirical and theoretical forces and the
values of equation coefficients of the filament PP, dy=0.15 mm
loaded with the rate of V=5 mm/min at the strain to 15 % and then
subjected to relaxation
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Table 1.
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dy=0.15 mm loading with the
rate of V=5, 50, 500 mm/min at the strain to 15 %

Speed, Force, N Coefficients of Equation
mm/min Fiio Fuo Fao Fap Fao Fay Fao Faw Fseog Fsp ¥ a b C;n
1.82 182 364 363 527 529 636 643 7.18 729 0.018 1.21 -57.54 3.05
5 191 191 364 365 509 505 618 6.10 7.09 698 0.019 0.64 -24.11 2.48
200 196 3.64 362 509 507 6.18 6.16 7.09 7.06 0.020 0.76 -33.20 2.44
200 2.00 364 360 509 507 6.00 59 673 6.64 0.016 4.01 -245.61 294
191 153 3.64 327 509 468 6.18 583 691 6.75 -0.018 0.13 17.11 15.90
227 244 418 420 591 592 718 7.18 809 808 0.12 4.15 -5.22 5,89
50 2.18 2,04 391 381 545 496 6.64 634 745 7.09 -0.25 1.92 17.47 17.93

218 213 400 398 582 583 7.00 7.04 800 798 0.22 30.15 -164.59  3.14
2.18 210 400 392 573 562 691 674 791 768 024 51.84 -305.04 237
2.18 198 418 401 591 568 7.09 683 809 781 0.25 39.00 -214.47 228

1.64 191 3.18 3.15 545 542 7.09 7.08 818 823 134 45.76 -53.88 5.42
500 1.80 190 3.60 342 567 557 738 734 855 848 -2.63 15.88 12.90 20.58
1.89 193 3.69 3.68 567 564 7,11 704 837 826 283 202.34  -336.59 131
1.71 140 333 3.18 549 514 738 699 864 850 -8.19 21.00 38.47 46.74
144 144 306 3.09 522 523 684 690 810 820 256 55.53 -78.78 2.05

Table 2.
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dy=0.30 mm loading with the
rate of V=5; 50; 500 mm/min at the strain to 15 %

Speed, Force, N Coefficients equation
mm/min = Fi  Fiey Fay Fay Fsog Fian Fao Fan Fsg Fsp y a b Czn
846 855 1615 1598 2231 22.19 2692 2884 30.38 3042 0.046 25.61 22.58 22.84
7.69 7.78 1538 1521 21.54 2142 26.15 26.07 29.61 29.65 0.046 25.61 22.58 22.07
5 7.69 7.78 1538 1521 21.54 2142 26.15 26.07 29.61 29.65 0.046 25.61 22.58 22.07
8.08 851 1615 16.79 2231 2229 2692 2750 30.00 3042 -0.0052 9.11 55.21 40.45
7.69 7.55 1538 1490 21.92 21.43 26.54 26.08 30.00 29.66 0.068 94.31 -70.98 15.52
8.08 7.87 1654 1642 2385 23.83 2846 28.63 3231 3273 1.06 1178.06 -1895.67  9.24
846 823 1692 16.72 2423 24.14 28.85 28.84 32.69 32.72 0.99 1018.22 -1606.15  10.80
50 846 839 1692 1696 23.85 23.69 2846 28.18 3231 3197 0.96 594.12  -862.92 10.72
885 879 1692 16.99 2385 2373 2846 2825 3231 32.04 0.96 614.19  -914.65 10.79
8.46 852 16.15 1638 2346 2341 2846 2839 3231 3223 0.87 25248  -325.69 13.20
500 597 1386 13.68 25.02 25.12 33.11 3293 3811 3812 0.98 156.84  -115.52 40.76
693 693 1578 15.78 26.56 2632 33.88 3395 38.11 37.69 -0.04 188.81  -159.37 41.89
500 462 416 1039 1149 17.71 17.08 2425 35.66 28.87 2830 -29.05 61.09 156.73 173.03
11.55 11.74 23.10 23.52 3349 33.44 39.27 2944 4273 4333 498 426.03  -521.37 29.92
1232 11.57 2348 2487 33.11 3428 39.65 39.68 43.12 4337 -1142 66.05 74.48 92.09
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Table 3.
The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dy = 0.45 mm loading with
the rate of V= 5; 50; 500 mm/min at the strain to 15 %

Speed, Force, N Coefficients equation

mm/min Ficw Fiw Fao Faon Fsg Fiww Fao Faww Fseo Fseo y a b C;n
15.38 1478 3231 32.10 44.61 4445 53.08 52.83 60.00 59.97 0.17 337.33  -322.21 23.22
1538 1698 33.85 35.73 47.69 48.11 56.92 56.66 63.08 62.71 0.063 108.11  20.22 52.51

5 1538 13.38 3231 31.21 4538 4539 5385 53.87 61.54 6131 0.20 7858.99 -13573.92 17.70
1538 1492 3231 3224 44.61 4459 53.08 5297 60.00 60.11 0.17 33733  -322.21 23.36
13.85 1421 30.00 30.03 43.08 42.66 5231 51.58 59.23 5827 0.12 162.12  -90.23 33.58
1526 1553 33.68 33.93 4842 48.61 5842 5850 6684 66.86 1.96 1049.38 -1469.77 19.98
1631 1635 3421 34.10 4895 48.72 57.89 5720 64.74 63.54 138 1200.28 -1696.0 30.68

50 15.79 1582 33.68 33.59 4842 4859 57.89 58.06 6526 6555 1.65 804.08  -1070.75 26.27
15.12 15.00 32.56 32.53 46.51 46.56 55.81 5559 6395 63.36 2.02 2761.54 -4433.37 18.58
14.74 1524 32.10 3224 4579 4598 5474 5487 62.63 62.68 2.05 3318.05 -5411.89 17.21
923  9.64 23.08 2295 47.69 48.64 63.08 6537 7538 79.13 2633 4375.55 -7929.26 1.92
6.15 825 2231 2251 47.69 48.02 64.61 64.79 7231 71.08 -15.18 46193  -343.25 133.44

500 12.31 12.68 33.85 36.23 53.85 53.69 6692 66.79 73.85 7332 -84 21625  -24.49 110.00
923 794 2538 25.07 49.23 49.03 66.15 66.79 7692 79.22 10.00 476.26  -537.77 57.01
10.77 11.76 3231 30.07 53.85 53.85 66.92 6639 70.77 6935 -44.69 264.06 92.38 231.93

Table 4.

The values of the empirical and theoretical forces and the values of equation coefficients of the filament PP, dy=0.15 mm loaded with the
rate of V=5; 50 mm/min at the strain to 15 % and then subjected to relaxation
Speed, mm/min Force, N Coefficients equation

Fl(.c) Fl(.t) FZ(.c) F2(.t) F3(.c) F3(.t) F4(.c) F4(.t) FS(.c) FS(.t) z a b Con

509 509 364 364 236 237 145 146 073 074 0.023 -30.90 34.55 432

5 491 491 345 345 227 228 145 147 073 076 0.026 -136.60 20747 4.85

473 470 327 327 218 220 145 150 091 098 0.015 -16.60 9.99 3.23

500 5.00 355 356 245 246 1.73 175 1.09 1.11 0.024 -324.03 53149 4283

473 470 327 327 218 220 145 150 091 098 0.015 -16.60 9.99 3.23

582 581 391 390 245 245 145 145 073 073 0.15 -14.44 3.53 3.21

50 545 550 382 386 255 257 164 165 091 084 024 -20.22 15.28 4.51

591 591 409 409 264 264 173 173 1.09 1.09 0.18 -39.64 39.82 3.86

591 591 418 418 273 273 182 182 109 1.08 0.26 -145.50  217.34 5.14

6.18 6.19 436 437 291 292 191 191 118 1.18 0.19 -17.69 9.18 3.96
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Fig. 3. The values of the empirical and theoretical forces and the
values of equation coefficients of the filament PP, dy=0.15 mm
loaded with the rate of V=50 mm/min at the strain to 15 % and
then subjected to relaxation

3.4. Conclusions

On the basis of conducted examinations the following
conclusions can be drawn:

1. The proposed model represents adequately stress — strain
relationships of polypropylene monofilaments subjected to
tensile test.

2. Derived model precisely describes the relaxation phenomenon
of investigated monofilaments conducted during 180 sec.

4. Description of the
rheological properties of
PP nonwovens subjected to
the compression loads

To describe the rheological properties of polypropylene
nonwovens the rheological model presented in Fig. 1. was
modified assuming the weight of piston as equal to zero.

4.1. The analytical solution
of rheological equations

During the model straining the compression force F is
resolved into force F, acting in the element I and into the force F,
acting in the element II. It is assumed that force F acting upon
samples is proportional to the strain ¢ till the limit value gy (limit
of proportionality) is reached. The measurements show, that after
straining in the interval 0<¢ <e ( residual strains of sample are not
observed. In this phase of compression the force in the element I
equals to:

F=Ce (22)
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and in the element II equals to:
F,=Ce (23)
As long as F, < T, where ¢ is the strain of model, the total

force loading the model is:

F=F +F,=(C,+C,)e=Ce (24)

where C is the total stiffness of model equals to C1 + C,. When

the load in segment II reaches the value T=C,ut,, the piston

begins to move downwards in viscous liquid with the velocity
de,, F,-(T+Key,) _

dt n (25)
_Gie-Cy, -T-Key, _
n
_Ce-T—(C,+K)g,,
n

The rate of increase of model strain depends on the used
tester. According to present standards, the stress-strain testers
should work with constant rate of deformation i.e.:
e=ut (26)
where u- is speed of motion of a compression food, and t- is time
of motion of a foot. If we introduce this value to equation (25) we
receive
_ ﬁ _Cut =T -(C,+K)&), 27

dt n
The integral of this equation is

T 28
szz—i t—ty+7l-e” (28)
© G +K

where time of relaxation is expressed by equation
__n (29)
C,+K
and t, is time at the limit of proportionality.

The load acting upon the model can be expressed as:
F=F+F,=Cut+Cut-C,&,, (30)

and substituting to equation (30) the formula (28) we have:
2 1=to
F=Cut—CC2uK|:t—t0+r(l—e : )} @

2

For practical use the equation (31) can be presented in simpler
form of:

F_cMz—Au[t—tow(l—e - )} (32)
where:

4= G (33)

C,+K
or
X-X,

Y=4X+B,+De * 34)
where:

4, =u(C-A4) (35)
B, = Ault, - ) (36)
D, = Aur 37)
Y=r (38)
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X=t (39)
R=1 (40)

Both simpler forms of the equation (31) can be used for
verification of theoretical considerations concerning the
prediction of the load-deformation curves during the compression
of non-woven fabrics. In presented paper the method of non-linear
least square method was used to find the coefficients of the
equation (34).

The model describing the relaxation phenomena

Stopping the instrument at the moment t; ,we allowed the
material to undergo stress relaxation. At this moment the
deformation of the sample was equal to deformation of spring in
element 1. The force in element I was not changing in a period of
time of relaxation, while the force in element II was diminishing.
The decrease of the value of force F, results from the recovery of
the compressed spring in element II due to the downward
movement of piston joined with spring II. The recovery of spring
II can be realised till the moment of equilibrium of the value of
force F, with the value of friction force T. The displacement of
the piston in viscous fluid can be described by the equation:
dey _Fy (1)

dt n
At the moment of t; the shift of a piston was equal to:

1
- b [T+ Czu(to —r)]e;(' g 42)
C+K |- Czu(tI —7)-T
The force resulting from the piston movement F,,, can be
determined by equation (43):
F,=-F(t,)+(C, +K)e,, +T (43)
Introducing the equation (43) to formula (41) we have:
de,,  Ce(t,))-T C,+K (44)
= + &2
dt n n
Integral of this equation is:
~ Cet)-T) " Ce@)-T (45)
&2 = 5221_(:76 R E—
,+K C,+K
Determination of equation (45) allows for the definition of the

force F during the relaxation in a form of equation (46):
F =-Ce(t))+C,¢e,, =—Cut, +

€22

o (46)
e, CE@I-T) 1 Cootw) =T
- C,+K C,+K
Introducing to the equation (46) the following formulae:
B, =C, GCe(t,)-T _ Cut, (47)
C,+K
D, =G| &, _Get)- T “8)
C,+K
we can reduce the equation (46) to a form of:
F=B,+De " (49)

Simplified form of equation (46) was used for verification of
theoretical consideration on the relaxation of non-woven fabric
after compression. The non-linear least square method was used
to fit the parameters of model equation (50) using computer
NCSS 6.0

X;-X

Y=B,+De (50)
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Recovery after compression

At the moment t, the compression food changes its direction.
At that moment the recovery process after compression begins. In
both elements of model the linear recovery of springs I and II is
observed and the elastic deformations resulting from compression
of tested non-woven fabrics are reversed. When the force in
element II equals to friction force T the upward movement of
piston begins what results in non-linear recovery of force. In
element I the force is proportional to the deformation of model,
therefore we have:

&, =ut, —ult—t,]=2t,u —tu
(51
The force in element I can be defined by the formula (31)

F=Cg, =C1[2t2u—tu] (52)

and the force in element II is equal to:
F,=C,e,—C,¢,, =C2[2[2u—tu]—C2€2_2 (53)

The displacement of piston &,, can be expressed by the
following equation:
de,, _F,-T-Ke¢),

dt U (54)
The solution of differential equation (54) is given in a form of
1 2tu—9—tu+ur+
€10 = -t
I+x [52A2_2[1+K]—t2u+‘9—u7]e : (55)

The total force acting on a model during the recovery process
can be defined from the following formulae:

F= FI +F2 (56)
F, = C,[2t,u — 1] (57
F,=C, [212” - tu]7 G5, (58)
F=C2t,u—-Ctu

1+x

t—t
T

rtzu —($-uzr)-tu } (59)

+ [521_2 [1 + K] —tu+8-— ur]e
Substituting to equation (59) the following of expressions:

P:tzu (60)
W:[52>2‘2[1+K]—P+19—u2'] (61)
Q:C(ZP[J,L}MJ
1+x 1+x (62)
_ Cz
I+ (63)
R=ur (64)

we have the final equation describing the recovery process of
tested non-woven fabrics in a form of :

F:QfStufWexp(P;?m)

(65)
The equation (65) was introduced to computer program
NCSS6.0 in a form of :

Y=4,-BX-D, exp[tz ;XJ (66)

W. Zurek, M. Chrzanowski, W. Sybilska, |. Jatmuzna
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where:

4,=0 (67)
B; =Su (68)
Dy =W (69)

and the values of parameters of model equation were fitted using
the non-linear least square method.

4.2. Procedure of model verification

Based on the above equations describing the shape of the
elastic recovery curve it is possible to calculate the rheological
properties of investigated type of nonwovens under the stress-
recovery test.

Using the non-linear least squares method it is necessary to
calculate the value of t fitting the equation of the relaxation
curve to experimental data. Basing on the value of t which was
found from the equation describing the relaxation curve and
experimental points of the elastic recovery curve it is necessary
to fit the equation 5 finding the value of A, B and C.

4.3. Experiment

The verification of proposed model was completed using
three various types of nonwoven samples. All samples were
manufactured using needle-punching technology. The
nonwovens were prepared from polypropylene fibres of linear
density equals to 6.7, 12, 18 dtex and length equals to 60 mm.
The area mass of nonwovens was approximately equals to
400 g/m*. The prepared samples were investigated under
compression load using Instron tester. All samples were
compressed to the pressure equals to 0.0247 N/mm? with the
speed of 5 mm/min. The characteristics of test material are
presented in Table 5.

Table 5.
Design of experiment
Type Linear Length Depth Number
of density of fibre °f hi needle of ni needle
punching punching
flore - fdtex] - dmml [1/enr’]
6.7 100
PP 12 60 14 130
18 160

In order to carry out the verification the value of ty, t;, t, was
calculated for each set of investigations. Based on the set of
experimental data the constant values of equations of
compression, relaxation, and recovery: 4;, As, B;, By, B;, Dy, D),
D; and 7 were evaluated using method of Levenberg-Marquardt.
The example of the shape of theoretical and experimental curves
for all types of designs is presented in Figs. 4 a-c. Next the
correlation between the experimental data and data from the
theoretical model were evaluated. The values of correlation
coefficients are given in Table 6.

The application of Zurek’s rheological model for description of mechanical behaviour of textiles ...

Analysis and modelling

4.4. Conclusions

The results presented in Table 6 indicate that for each
investigated type of nonwovens there is no significant difference
between the shape of the theoretical and experimental elastic
recovery curve during the recovery test (as shown in Fig. 4). For
all variants of nonwovens the correlation coefficient between
experimental and theoretical data is between 0.883 to 0.947.

a) compression

<o
L

i

Y
r

Fig. 4. Example of the verification of the compression, the
relaxation and the elastic recovery curves for PP nonwovens
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Table 6.
The list of correlation coefficients
Number  Correlation  Correlation Correlation
Typeof  ofneedle  coefficient of coefficient of coefficient of
fibres punchglg compression  relaxation  recovery
[Vem?]
100 0.981 0.988 0.898
PP6,7/60 130 0.922 0.986 0.906
160 0.922 0.987 0.924
100 0.987 0.986 0.903
PP12/60 130 0.995 0.984 0.899
160 0.992 0.985 0.883
100 0.988 0.987 0.928
PP18/60 130 0.997 0.983 0.947
160 0.999 0.984 0.941
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