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Abstract
Purpose: The main goal of the research is to build a model of relationship between burr height created during 
drilling operation and signal representing axial drilling force. Such a model can be applied in diagnostic system 
for on-line estimation of bur height.
Design/methodology/approach: The first applied approach is based on a step by step procedure in which 
several statistical models were built. The second one is based on specific features of artificial intelligence 
methods. The artificial neural networks serve as a tool for data selection and integration while the fuzzy logic 
systems are applied for data integration, only.
Findings: The developed algorithm for processing axial drilling force allowed constraining the noise inherent 
to the drilling process and emphasising the information that could be useful for building considered model. The 
impact of the properly conducted data selection has been emphasised. Also, importance of providing information 
represented with axial drilling force has revealed.
Research limitations/implications: The developed models need to be checked or improved for practical 
implementation. Such improvement can be done by introducing other signal features or other cutting parameters as 
model inputs. Also, analysis of other signals that can be measured during drilling is assumed as a future work.
Practical implications: The conducted research reconfirmed possibility of on-line diagnostics of bur height 
during drilling. Several parameters necessary for such diagnostics have been estimated. This suggests continuing 
the research in order to design a system that could be applied in industrial conditions.
Originality/value: The proposed approach is not a typical since analytical models, FEM models or models 
basing only on cutting process parameters have been considered, mainly. Such models are limited to two 
dimensional machining, usually. Besides, application of artificial intelligence methods for data selection and 
integration points at novelty of the research conducted.
Keywords: Machining; Burr formation in drilling; Diagnostics; Artificial intelligence methods
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A. Sokołowski, On burr height estimation based on axial drilling force, Journal of Achievements in Materials 
and Manufacturing Engineering 43/2 (2010) 734-742. 

 
 

 

1. Introduction 
 
It is widely known, that burrs which are created in most 

machining operation deteriorate quality of the part, cause 
difficulty in part assembly and may cause safety hazards (Fig. 1). 

These undesirable features of burrs justify a need for some means 
allowing avoiding such cases. Frequently, deburring operation is 
performed, e.g. [2, 6]. However, this operation should be carefully 
considered, since the deburring cost can be as high as 30% of the 
cost of production. Therefore, one can try to find another way to 
reduce the negative influence of burrs. In this case, burr formation 
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models can be applied in order to reduce burr size in a certain 
type of machining. Application of such models consists in finding 
nearly ideal machining conditions, improving part design or 
conducting process planning for proper burr placement (easier to 
deburr). From other hand, on-line workpiece diagnostics would be 
desirable in order to estimate the created burr size and decide 
whether deburring operation is necessary.  

The paper deals with above mentioned burr diagnostics. The 
presented research has been initially described in [9]. Then, 
several approaches have been tested, e.g. [8]. Finally, the recorded 
data has been again processed and a specific, new approach has 
been proposed. This is reflected in structure of the paper in which 
author tries to summarise research conducted since several years. 

Regarding the burr formation phenomenon, it should be 
emphasised that a lot of work has been done, already. Especially, the 
research conducted by Consortium on Deburring and Edge Finishing 
(CODEF) [2] introduced many interesting solutions and findings. 
Following this research, the problem of burr formation models can be 
regarded from different points of view. Generally, the two types of 
models are taken into consideration. In the first case, analytical 
models based on the cutting process mechanism are analysed. The 
models require understanding of the properties and characteristics of 
burrs produced by manufacturing process, e.g. bending and shearing 
during chip formation must be analysed in relation to characteristics 
of workpiece material. The earliest models basically applied the 
theory of plastic deformation for assumed orthogonal cutting 
conditions, e.g. [1]. Some enhancement to the models can be 
introduced by considering the plastic hinge concept. However, this 
approach focuses only on the two dimensional machining case. 
Machining operations such as face milling are not strictly two 

dimensional and hence these models are not applicable. In the case of 
three dimensional machining, the finite element method (FEM) seems 
to be a prime candidate to predict burr size [2].  

The second type of models takes in to consideration empirical 
data. In this case, modelling is performed with use of statistical 
methods that potentially allow representing a certain burr 
characteristic value as a function of cutting parameters. Next, 
information acquired by measuring and analysing selected signals 
recorded during cutting process can be applied, as well. The research 
presented in the paper deals with such an approach. The main goal of 
the research is to build a model of relationship between burr height 
created during drilling operation and signal representing axial drilling 
force . This approach requires several assumptions that must be 
established in order to decide which measured signal feature can be 
applied and how to pre-process the measured signal. Since a lot of 
combination can be considered in this case, the two possible 
procedures are discussed in the paper. In the first case, we applied a 
step by step procedure in which several models were built and 
compared. This comparison allowed finding a set of parameters (i.e. 
parameters of signal processing methods and signal features) that 
gave burr height models with high criteria values. The second 
procedure aimed at performing the search for optimal parameters in 
more „automatic” way, i.e. with reduced human interaction. This 
procedure is based on specific features of artificial intelligence 
methods. In this case, artificial neural networks and fuzzy logic 
systems are considered. The artificial neural networks, namely Feed 
Forward Back Propagation (FFBP) neural networks serve as a tool for 
data selection and data integration while the fuzzy logic systems are 
applied as an alternative method for data integration, only. Here, the 
Mamdani type of fuzzy reasoning is tested. 

 
 

a) 
 

 

c)

b) 

 
 

d) 
 

 

Fig. 1. Examples of drilling burr shapes; uniform (a) and crown (b) burrs [4]; schematics of the measuring set-up (c) and block diagram of 
the measured signal processing 
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2. Experimental procedure 
 
The measurements were conducted while drilling austenitic 

steel 00H18N10 on drilling machine tool WRS-25/08 (Fig. 1c) 
[9]. In order to perform drilling, twist drills diameter of 5 mm 
were applied. The drills varied according to their geometrical 
parameters and cutting edge wear. Also, the experiments were 
conducted with different cutting speeds. The mentioned above 
varying parameters were as follows:  
 straight and corrected cutting edge (pks/kks); 
 chip clearance angle of 230 and 330 ( ); 
 rotational speed 764 rpm (vC=12 m/min), 637 rpm  

(vC=10 m/min) and 892 rpm (vC=14 m/min); 
 new drills and drills with average wear VB = 0.57 mm. 

The four signals were measured during each drilling operation, 
i.e. axial drilling force, torque, vibration and acoustic emission. 
However, in the paper the axial drilling force measured with Kistler 
dynamometer is analysed, only. This was decided basing on careful 
analysis of the recorded signals. After each operation, the burr 
height was measured with a dial gauge. For each drilled hole, the 
burr height was measured in three points (1200) along the hole edge 
and an average burr height was calculated. Generally, 96 
experiments were conducted, i.e. for each combination of the above 
mentioned parameters, four holes were machined. 

The general assessment of the conducted experiments was 
aiming at finding the parameters that affect the burr height. 
Reviewing the results of the experiments it has been found out, 
however, that only qualitative assessment could be done. Such a 
case was caused by a strong variation of burr height even while 
drilling with the same parameters. Trying to underline the most 
significant parameters, one could point at the cutting edge wear 
that caused substantial increase in burr height. Also, increase in 
cutting speed caused an increase in burr height. In contrary, 
influence of other parameters depended one on another. These 
findings can be used to not only characterise changes of burr 
height but to confirm a need for observing sensor signals in order 
to estimate burr height. In other words, it can be concluded that in 
the discussed case, burr height modelling cannot be done using 
the drill parameters and the cutting parameters, only. 

 

 
 

Fig. 2. Determination of the drill path length „dpl” 
 
As it was mentioned above, the measured signal representing 

the axial drilling force was analysed in order to estimate the burr 
height. The analysis focused on two main tasks. In the first case, 
the drill path length „dpl” (Fig. 2) was to be decided. This length 
describes a position of drill tip from which the cutting force 

potentially contains important information related to burr 
formation. The second case is related to measured signal 
processing methods. In our research, it was assumed that burr 
height is related to force changes while drill exits the workpiece. 
Therefore, it was decided not to observe the original signal but its 
derivative. Next, it was assumed that the observed signal can be 
smoothed with moving average method before and after 
calculating the derivatives (Fig. 1d). Such approach should allow 
to constrain influence of fast changes of the cutting force that do 
not show any relation to burr formation. Finally, it was decided 
that three processed signal features would be analysed, i.e. RMS 
value, mean value and standard deviation. Generally, the 
described above assumptions make it necessary to decide about 
the drill path length and the parameters of the moving average 
method, i.e. smoothing window widths. Also, a processed signal 
feature that shows the highest correlation to burr height should be 
pointed at. The results of burr height estimation based on selected 
features of axial force signal processed with different parameters 
are presented in the next sections of the paper. 
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Following the assumptions stated in the previous section of 

the paper, several tests have been conducted. In order to constrain 
the number of tests, the signals measured while drilling with 
cutting speed of 12 m/min were analysed, first. It was assumed 
that the results obtained from this part of the research would be 
applied for analysing the whole available data. Each test consisted 
of three steps. In the first step, the measured drilling force signal 
was processed with a certain signal processing method (Table 1). 
The signal processing methods varied according to smoothing 
window widths. Then, for each of nine drill path lengths, the 
mean value, RMS value and standard deviation were calculated. 
In the last step, model building procedure was applied to build a 
model of relationship between burr height and calculated feature 
(e.g. Fig. 4). Type of the models was decided following an 
observation of data distribution. Mainly, exponential or 2 order 
polynomial models were tested. The quality of the models was 
assessed based on the correlation factor R and the sum of the 
square residual values SRV. 

 
Table 1.  
Schematic schedule of the tests conducted 

 A B C 
D To =0.097 

Tr =0.000 
To =0.097 
Tr =0.097 

To =0.097 
Tr =0.195 

E To =0.195 
Tr =0.000 

To =0.195 
Tr =0.097 

To =0.195 
Tr =0.195 

F To =0.389 
Tr =0.000 

To =0.389 
Tr =0.097 

To =0.389 
Tr =0.195 

To [s] - smoothing window width applied to process the original 
drilling force signal; 
Tr [s] - smoothing window width applied to process the derivative 
of the original drilling force signal; 
For each To and Tr , nine drill path lengths „dpl” were analysed 
(from 0.57 mm to 3.23 mm). 
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Fig. 3. Exemplary influence of smoothing window widths To and 
Tr on correlation factor R 

 
As it can be seen from Table 1, nine tests were conducted for 

each combination of smoothing window widths. The highest R 
value and the lowest SRV value pointed at the drill path length 
that could be considered as optimal. Such approach means that for 
a certain measured signal feature, 81 models had to be built in 
order to decide about the smoothing widow widths and the drill 
path lengths. At the next step, the R and SRV values 
corresponding to the optimal drill path length were presented in 
the form of graphs, shown in Fig. 3. From this figure it becomes 
obvious that R approaches the optimal values while To and Tr 
reach 0.389 s and 0.195 s respectively. Increasing window widths 
above these values does not improve the models in terms of R and 
SRV values. 
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Fig. 4. Burr height versus mean value of processed derivative of 
axial drilling force [9]  

 
The above described results were based on analysis of RMS 

values calculated for processed drilling force signal. The next part 
of the research aimed at comparison of models built with use of 
two other features, i.e. mean value and standard deviation. 
In order to perform such a comparison the similar procedure was 
applied as in the case of RMS values. The obtained results 
revealed that the best model in terms of R and SRV values could 
be achieved based on the mean values of the processed drilling 
force signal. In this case R=0.950 and SRV=0.205 were obtained 
for the drill path length of 1.52 mm. The same drill path length 
was selected while analysing models based on RMS values and R 
and SRV were as follows : R=0.931 and SRV=0.287. In contrary 

to the analysis of the RMS and mean values, the models built with 
use of the standard deviation values gave poorer results and were, 
therefore, discarded. 

The last stage of the conventional approach consisted in 
testing the data collected while drilling with cutting speed of 
10 m/min and 14 m/min. The main task to be solved at this stage 
was to estimate the optimal drill path length for these cutting 
speeds. Following the main procedure, a next set of models was 
built and analysis of R and SRV values was performed. The 
analysis confirmed that previously determined smoothing window 
widths can be applied for different cutting speeds. However, the 
drill path lengths depend on the cutting speed and must be 
determined independently for each cutting condition. For the 
cutting speeds applied in the experiments the optimal drill path 
lengths were estimated as follows: dpl=1.27 mm for 10 m/min; 
dpl=1.52 for 12 m/min and dpl=2.22 mm for 14 m/min. The 
estimated values were, then, applied to build burr height model 
for whole available data. Such a model is shown in Fig. 4. This 
model expresses a relationship between burr height and mean 
values of the processed drilling force signal. In the case of the 
model from Fig. 4, R and SRV values were of 0.926 and 0.800 
respectively. As it could be expected, the models based on RMS 
values gave lower criteria values (R=0.906 and SRV 1.014). 

A partial summary of the conducted research can be done 
taking into consideration two main points. In the first case, it is 
concluded that the applied procedure allows suppressing much of 
the noise inherent to drilling process and emphasises the 
information which is related to burr formation. This can be 
expressed in terms of final models built for whole available data 
and relatively high correlation factor R and low SRV values. 
However, the way in which the final models were obtained cannot 
be considered satisfying. As it has been shown above, one would 
have to spend a lot of time in order to test high number of models 
to point at the best parameters of signal processing methods and 
the optimal tool path length. Thus, it would be desirable to 
perform such a search in a more „automatic” way. This means 
that in the next part of the research we try to apply and test a 
certain procedure that potentially allows automatically selecting 
measured signal features which show the highest correlation to 
the observed phenomenon. 

 
 

4. Application of artificial intelligence 
methods for data selection and 
integration 

 
Following the conclusions stated in the previous section, Feed 

Forward Back Propagation (FFBP) neural network, has been 
applied to select parameters of the signal processing methods and 
optimal drill path length. Application of FFBP network is based 
on the procedures and methods available in the Intelligent 
Monitoring System Designer (IMSD) described in [7, 10, 11]. 
IMDS is a tool that provides facilities, i.e. methods and 
algorithms, to automatically perform design of monitoring 
systems. The main idea applied in this system is to try to retrieve 
the most significant features of artificial intelligence methods, i.e. 
artificial neural networks, fuzzy logic systems and evolutionary 
algorithms. It should be added that conventional approaches are 
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Fig. 4. Burr height versus mean value of processed derivative of 
axial drilling force [9]  

 
The above described results were based on analysis of RMS 

values calculated for processed drilling force signal. The next part 
of the research aimed at comparison of models built with use of 
two other features, i.e. mean value and standard deviation. 
In order to perform such a comparison the similar procedure was 
applied as in the case of RMS values. The obtained results 
revealed that the best model in terms of R and SRV values could 
be achieved based on the mean values of the processed drilling 
force signal. In this case R=0.950 and SRV=0.205 were obtained 
for the drill path length of 1.52 mm. The same drill path length 
was selected while analysing models based on RMS values and R 
and SRV were as follows : R=0.931 and SRV=0.287. In contrary 

to the analysis of the RMS and mean values, the models built with 
use of the standard deviation values gave poorer results and were, 
therefore, discarded. 

The last stage of the conventional approach consisted in 
testing the data collected while drilling with cutting speed of 
10 m/min and 14 m/min. The main task to be solved at this stage 
was to estimate the optimal drill path length for these cutting 
speeds. Following the main procedure, a next set of models was 
built and analysis of R and SRV values was performed. The 
analysis confirmed that previously determined smoothing window 
widths can be applied for different cutting speeds. However, the 
drill path lengths depend on the cutting speed and must be 
determined independently for each cutting condition. For the 
cutting speeds applied in the experiments the optimal drill path 
lengths were estimated as follows: dpl=1.27 mm for 10 m/min; 
dpl=1.52 for 12 m/min and dpl=2.22 mm for 14 m/min. The 
estimated values were, then, applied to build burr height model 
for whole available data. Such a model is shown in Fig. 4. This 
model expresses a relationship between burr height and mean 
values of the processed drilling force signal. In the case of the 
model from Fig. 4, R and SRV values were of 0.926 and 0.800 
respectively. As it could be expected, the models based on RMS 
values gave lower criteria values (R=0.906 and SRV 1.014). 

A partial summary of the conducted research can be done 
taking into consideration two main points. In the first case, it is 
concluded that the applied procedure allows suppressing much of 
the noise inherent to drilling process and emphasises the 
information which is related to burr formation. This can be 
expressed in terms of final models built for whole available data 
and relatively high correlation factor R and low SRV values. 
However, the way in which the final models were obtained cannot 
be considered satisfying. As it has been shown above, one would 
have to spend a lot of time in order to test high number of models 
to point at the best parameters of signal processing methods and 
the optimal tool path length. Thus, it would be desirable to 
perform such a search in a more „automatic” way. This means 
that in the next part of the research we try to apply and test a 
certain procedure that potentially allows automatically selecting 
measured signal features which show the highest correlation to 
the observed phenomenon. 

 
 

4. Application of artificial intelligence 
methods for data selection and 
integration 

 
Following the conclusions stated in the previous section, Feed 

Forward Back Propagation (FFBP) neural network, has been 
applied to select parameters of the signal processing methods and 
optimal drill path length. Application of FFBP network is based 
on the procedures and methods available in the Intelligent 
Monitoring System Designer (IMSD) described in [7, 10, 11]. 
IMDS is a tool that provides facilities, i.e. methods and 
algorithms, to automatically perform design of monitoring 
systems. The main idea applied in this system is to try to retrieve 
the most significant features of artificial intelligence methods, i.e. 
artificial neural networks, fuzzy logic systems and evolutionary 
algorithms. It should be added that conventional approaches are 

4.	�Application of artificial 
intelligence methods  
for data selection  
and integration
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implemented in IMDS, as well. Regarding application of artificial 
intelligence methods, capability to extract important and useful 
information from input data should be emphasised since data 
selection is one of major tasks considered in the paper. This can 
be done with artificial neural networks by evaluating the weights 
between input and hidden layers in order to detect inputs that do 
not show a sufficient contribution to the computation of the actual 
output values, e.g. [11].  

The three feature selection methods basing on FFBP neural 
network have been tested for this application [7, 11]. The first one 
is called weight pruning method. The weight pruning method 
examines each weight of already trained network and tries to 
eliminate some of them based on maximum and RMS errors. 
Eventually, each input to the network is described with the 
number of weights that did not „survive” the process of 
elimination. It is assumed that the higher this number is, the less 
important is the respective input. The second method is called 
weight sum method. The method is also applied to the already 
trained neural network. Importance of each input is estimated 
based on the sum of absolute values of weights outgoing from this 
input. The inputs with small weight sum are considered as less 
important and, therefore, can be dropped. It can be added that the 
small weight sum value means that considered input was not 
“intensively” trained because it did not contribute to final output 
value determination, i.e. is less important. The third approach 
takes into consideration sensitivity analysis (sensitivity method). 

In this case, after the network is trained, the sensitivity of each 
output with respect to each input is individually calculated for 
every training vector. In order to assess the importance of each 
input, the root-mean-square value of the obtained sensitivities is, 
then, computed. Finally, the input importance is scaled within the 
range 0.0 - 100.0 % . 

The feature selection methods have been applied in the way 
that corresponds to the approach performed in the case of the 
conventional analysis. As it was described, determination of the 
optimal drill path length was one of the most important tasks. In 
order to determine drill path length, several models had to be built 
first. Then, R and SRV values had to be examined. Typical 
representation of such a case is shown in Fig. 5a from which one 
could find out that the drill path length of 1.52 mm seems to be 
optimal. Application of the input selection methods should not 
involve a step by step (model by model) analysis. Therefore, all 
values representing different drill paths lengths were fed to the  
9-3-1 FFBP network and the training was performed. Then, the 
importance of each input was estimated, as shown in Fig. 5b.  

The obtained results correspond to those obtained in the case 
of the conventional approach (). The input selection methods 
point at these drill path lengths that gave the highest R and lowest 
SRV values. It is necessary to emphasise that the application of 
feature selection methods allows avoiding building and analysing 
of several models. Such a case is obviously interesting and 
desirable from a user point of view.  
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Fig. 5. Results of the conventional approach and FFBP neural network application for the case CF - Table 1, vC=12 m/min; 
a) - R and SRV determined for burr height model basing on RMS values; b) - importance of RMS values estimated with FFBP network  

 

The tests described above were focused on partial tasks 
reflecting the way in which the conventional analysis has been 
performed, e.g. first the optimal drill path length has been selected 
and, then, different signal features were tested for this length. 
Ideally, such analysis should be performed in parallel so the 
selection of the optimal drill path length would not affect 
selection of the signal feature. This means that application of data 
selection for deciding about drill path length and signal feature at 
the same time would be a very desirable approach. From neural 
network point of view this means that FFBP network should be 
trained with input vectors containing values representing different 
drill path lengths and the three analysed signal features. Here, the 
network has a relatively difficult task to solve since it is expected 
to select few inputs out of 27 values.  

In the first step of analysis of the obtained results a general 
assessment of a relative importance of signal features should be 
taken into consideration. As it has been revealed, the weight 
pruning and the sensitivity method can be considered as the most 
reliable methods. In both cases, the mean values and RMS values 
are ranked with higher importance than the standard deviation, as 
shown in Fig. 6. Especially, the sensitivity method ranked the 
inputs in a very distinct way. It is necessary, however, to add that 
this method tended some times to give a similar importance to 

few inputs. This means that results of sensitivity analysis method 
application cannot be repeatable in some cases.  

In the second step of the analysis a selection of the drill path 
length has been performed. As it can be seen from Fig. 6, both 
methods estimated inputs corresponding to the previously selected 
drill path length of 1.52 mm with the highest importance. Next, 
sensitivity analysis method uniquely pointed at mean value as the 
most important input. This fully corresponds to the previously 
shown results, again.  

In case of weight pruning method, the final decision on 
measuring signal feature requires some additional discussion. This 
method suffers from low resolution sometimes. This is caused by 
expressing data importance with number of weights connecting 
input and hidden layers. If number of weights is low, the weight 
pruning method allows assessing importance with only few values 
form the range 0.0 - 100.0 %. Consequently, one should carefully 
consider inputs with similar importance. This is a case from Fig. 6 
where weight pruning estimated the mean value and RMS value 
with similar importance. In order to finally decide on input 
importance, the selected data should been again fed into the 
network and importance estimation should be repeated. Such 
approach assesses mean value with highest importance.  
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Fig. 6. Input importance estimated with FFBP neural network, WWS – mean values, WOS – standard deviation, WRMS – RMS values,  
case CF - Table 1, vC=12 m/min  
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implemented in IMDS, as well. Regarding application of artificial 
intelligence methods, capability to extract important and useful 
information from input data should be emphasised since data 
selection is one of major tasks considered in the paper. This can 
be done with artificial neural networks by evaluating the weights 
between input and hidden layers in order to detect inputs that do 
not show a sufficient contribution to the computation of the actual 
output values, e.g. [11].  

The three feature selection methods basing on FFBP neural 
network have been tested for this application [7, 11]. The first one 
is called weight pruning method. The weight pruning method 
examines each weight of already trained network and tries to 
eliminate some of them based on maximum and RMS errors. 
Eventually, each input to the network is described with the 
number of weights that did not „survive” the process of 
elimination. It is assumed that the higher this number is, the less 
important is the respective input. The second method is called 
weight sum method. The method is also applied to the already 
trained neural network. Importance of each input is estimated 
based on the sum of absolute values of weights outgoing from this 
input. The inputs with small weight sum are considered as less 
important and, therefore, can be dropped. It can be added that the 
small weight sum value means that considered input was not 
“intensively” trained because it did not contribute to final output 
value determination, i.e. is less important. The third approach 
takes into consideration sensitivity analysis (sensitivity method). 

In this case, after the network is trained, the sensitivity of each 
output with respect to each input is individually calculated for 
every training vector. In order to assess the importance of each 
input, the root-mean-square value of the obtained sensitivities is, 
then, computed. Finally, the input importance is scaled within the 
range 0.0 - 100.0 % . 

The feature selection methods have been applied in the way 
that corresponds to the approach performed in the case of the 
conventional analysis. As it was described, determination of the 
optimal drill path length was one of the most important tasks. In 
order to determine drill path length, several models had to be built 
first. Then, R and SRV values had to be examined. Typical 
representation of such a case is shown in Fig. 5a from which one 
could find out that the drill path length of 1.52 mm seems to be 
optimal. Application of the input selection methods should not 
involve a step by step (model by model) analysis. Therefore, all 
values representing different drill paths lengths were fed to the  
9-3-1 FFBP network and the training was performed. Then, the 
importance of each input was estimated, as shown in Fig. 5b.  

The obtained results correspond to those obtained in the case 
of the conventional approach (). The input selection methods 
point at these drill path lengths that gave the highest R and lowest 
SRV values. It is necessary to emphasise that the application of 
feature selection methods allows avoiding building and analysing 
of several models. Such a case is obviously interesting and 
desirable from a user point of view.  
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Fig. 5. Results of the conventional approach and FFBP neural network application for the case CF - Table 1, vC=12 m/min; 
a) - R and SRV determined for burr height model basing on RMS values; b) - importance of RMS values estimated with FFBP network  

 

The tests described above were focused on partial tasks 
reflecting the way in which the conventional analysis has been 
performed, e.g. first the optimal drill path length has been selected 
and, then, different signal features were tested for this length. 
Ideally, such analysis should be performed in parallel so the 
selection of the optimal drill path length would not affect 
selection of the signal feature. This means that application of data 
selection for deciding about drill path length and signal feature at 
the same time would be a very desirable approach. From neural 
network point of view this means that FFBP network should be 
trained with input vectors containing values representing different 
drill path lengths and the three analysed signal features. Here, the 
network has a relatively difficult task to solve since it is expected 
to select few inputs out of 27 values.  

In the first step of analysis of the obtained results a general 
assessment of a relative importance of signal features should be 
taken into consideration. As it has been revealed, the weight 
pruning and the sensitivity method can be considered as the most 
reliable methods. In both cases, the mean values and RMS values 
are ranked with higher importance than the standard deviation, as 
shown in Fig. 6. Especially, the sensitivity method ranked the 
inputs in a very distinct way. It is necessary, however, to add that 
this method tended some times to give a similar importance to 

few inputs. This means that results of sensitivity analysis method 
application cannot be repeatable in some cases.  

In the second step of the analysis a selection of the drill path 
length has been performed. As it can be seen from Fig. 6, both 
methods estimated inputs corresponding to the previously selected 
drill path length of 1.52 mm with the highest importance. Next, 
sensitivity analysis method uniquely pointed at mean value as the 
most important input. This fully corresponds to the previously 
shown results, again.  

In case of weight pruning method, the final decision on 
measuring signal feature requires some additional discussion. This 
method suffers from low resolution sometimes. This is caused by 
expressing data importance with number of weights connecting 
input and hidden layers. If number of weights is low, the weight 
pruning method allows assessing importance with only few values 
form the range 0.0 - 100.0 %. Consequently, one should carefully 
consider inputs with similar importance. This is a case from Fig. 6 
where weight pruning estimated the mean value and RMS value 
with similar importance. In order to finally decide on input 
importance, the selected data should been again fed into the 
network and importance estimation should be repeated. Such 
approach assesses mean value with highest importance.  
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Fig. 6. Input importance estimated with FFBP neural network, WWS – mean values, WOS – standard deviation, WRMS – RMS values,  
case CF - Table 1, vC=12 m/min  
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Fig. 7. Feature importance estimated with FFBP network fed with 81 inputs representing RMS values; selected cases from Table 1, 
 vC=12 m/min, importance estimated with the weight sum method 
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Fig. 8. A typical model obtained with FFBP neural network (a) 
and corrupted model built with improperly decided structure of 
FFBP neural network (b), case CF - Table 1, vC=12 m/min 

The most general case which was analysed with FFBP neural 
network consisted in selection of drill path length and the 
smoothing window widths. The selection was performed 
independently for each measured signal feature. This means that 
the network was fed with input vector representing 81 values, i.e. 
nine combination shown in Table 1 and nine drill path lengths for 
each combination. The results obtained in this case uniquely 
revealed that an increase in smoothing window widths increases 
the feature importance (Fig. 7). Also, for each combination from 
Table 1, the inputs corresponding to the previously selected 
optimal drill path length were estimated with high importance. 
However, additional neural network training is necessary in order 
to differentiate data importance, as it was described above. 
Similar case was observed while estimating importance of data 
representing the three considered cutting speeds at the same time.  

Generally, it can be concluded that the input selection 
methods can be successfully applied to search for the optimal drill 
path length, the smoothing window widths and the measured 
signal feature. As a successful application we consider here an 
application which allows substantially decreasing time and effort 
spent for the analysis. This seems to be the case even if the 
network training is to be repeated. 

Besides data selection, the model development can be 
performed with neural networks and fuzzy logic systems. It 
should be emphasised that application of these artificial 
intelligence methods is not necessary and serves for comparison 
purposes, only. A typical model obtained with application of 
neural network is shown in Fig. 8a. It must be underlined that the 
fuzzy logic system allows obtaining the similar model. The 
quality of the model depends on structure of both neural network 
and fuzzy logic system. For example, the quality expressed by 

 

correlation factor increases with increasing number of hidden 
nodes of neural network. However, if the parameters of neural 
network or fuzzy-logic system are not properly decided, 
substantially corrupted model can be developed. Such a case is 
shown in Fig. 8b. Here, the FFBP neural network contained large 
number of hidden nodes was trained. This large number of hidden 
nodes caused that the neural network model does not reflect the 
character of the analysed phenomenon.  
 
 

5. Summary 
 
Summarising the research presented in the paper the two 

assumed goals should be discussed. In the first case, an algorithm 
for processing axial drilling force has been developed. 
Developing such an algorithm we aimed at constraining the noise 
inherent to the drilling process and emphasising the information 
that could be useful for building a model of relationship between 
burr height and selected measured signal feature. The impact of 
the properly conducted data selection can be presented based on 
scatter diagrams that reflect model quality (Fig. 9). In Fig. 9a, 
scatter diagram representing model described with the 2 order 
polynomial is depicted. This model considers only selected 
cutting parameters, i.e. information on the state of cutting process 
expressed with measuring signals is not introduced. The second 
model basing on 4 order polynomial was developed with mean 
value of the processed signal of axial drilling force (Fig. 9b). The 
qualitative assessment of the two models already reveals the 
influence of information provided on-line by measuring signal. 
Satisfying correlation factor value of 0.964 was achieved in this 
case (Fig. 9b). Finally, we introduced cutting parameters and 
mean value of the measured signal into the model described with 
equation (1). Here, the correlation factor reached the highest value 
of 0.991 (Fig. 9c). 

The above description is related to analysis of data recorded 
during drilling with cutting speed vC=12 m/min. In the last step of 
the research, all available data was considered for burr formation 
modelling (Table 2). This approach fully reconfirmed conclusions 
and findings stated above. Also, artificial intelligence application 
can be justified based on results shown in Table 2. 

 

kkspksVBfWfH MAXWSZ /,,21          (1) 
kkspksVBvfWfH MAXCWSZ /,,,21           (2) 

where: 
HZ – burr height; 
f1 , f2 - the 4 order and 2 order polynomial, respectively; 
WWS - mean value of the processed axial drilling force signal; 
pks/kks - straight and corrected cutting edge; 

 - chip clearance angle; 
vC  - cutting speed; 
VBMAX – maximal flank wear of drills applied. 

 
Table 2.  
Burr formation models and respective correlation factors 

Model R 
HZ=f(vC, VBMAX, , pks/kks), the 2 order polynomial 0.789 
HZ=f(WWS), the 4 order polynomial  0.933 
HZ=f(WWS, vC, VBMAX, , pks/kks), equation (2) 0.974 
Fuzzy logic system with 5 inputs and 18 fuzzy rules 0.978 
FFBP neural network, structure 5-3-1 0.984 

 
The second goal of the presented research is related to the 

procedure applied for supporting the search for optimal 
parameters of signal processing methods. It is convenient to recall 
that we applied three feature selection methods based on FFBP 
neural network. The methods were expected to minimise time and 
effort that one would have to spend on reviewing of several 
combinations of analysed parameters. Based on the obtained 
results, some guidelines can be established in this case. Analysis 
of the recorded data must start obviously with calculations of 
different signal features for the signals processed with different 
smoothing widow widths. Then, the feature selection can be 
applied for assessing the influence of parameters of the signal 
processing methods (e.g. ). At this stage, one can already try to 
estimate importance of drill path length. After deciding about 
smoothing window widths, an analysis of relative importance of 
different signal features and confirmation of drill path length 
selection can be performed. Eventually, the final decision on the 
selection of the optimal drill path length and the most promising 
measured signal feature can be done.  
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Fig. 9. Scatter diagram of the measured and calculated burr height; a) HZ=f(VBMAX, , pks/kks) model described with the 2 order 
polynomial; b) HZ=f(WWS) model described with the 4 order polynomial; c) HZ=f(WWS, VBMAX, , pks/kks) model described with 
equation (1); vC = 12 m/min, drill path length 1.52 mm, case CF - Table 1 
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Fig. 7. Feature importance estimated with FFBP network fed with 81 inputs representing RMS values; selected cases from Table 1, 
 vC=12 m/min, importance estimated with the weight sum method 
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Fig. 8. A typical model obtained with FFBP neural network (a) 
and corrupted model built with improperly decided structure of 
FFBP neural network (b), case CF - Table 1, vC=12 m/min 

The most general case which was analysed with FFBP neural 
network consisted in selection of drill path length and the 
smoothing window widths. The selection was performed 
independently for each measured signal feature. This means that 
the network was fed with input vector representing 81 values, i.e. 
nine combination shown in Table 1 and nine drill path lengths for 
each combination. The results obtained in this case uniquely 
revealed that an increase in smoothing window widths increases 
the feature importance (Fig. 7). Also, for each combination from 
Table 1, the inputs corresponding to the previously selected 
optimal drill path length were estimated with high importance. 
However, additional neural network training is necessary in order 
to differentiate data importance, as it was described above. 
Similar case was observed while estimating importance of data 
representing the three considered cutting speeds at the same time.  

Generally, it can be concluded that the input selection 
methods can be successfully applied to search for the optimal drill 
path length, the smoothing window widths and the measured 
signal feature. As a successful application we consider here an 
application which allows substantially decreasing time and effort 
spent for the analysis. This seems to be the case even if the 
network training is to be repeated. 

Besides data selection, the model development can be 
performed with neural networks and fuzzy logic systems. It 
should be emphasised that application of these artificial 
intelligence methods is not necessary and serves for comparison 
purposes, only. A typical model obtained with application of 
neural network is shown in Fig. 8a. It must be underlined that the 
fuzzy logic system allows obtaining the similar model. The 
quality of the model depends on structure of both neural network 
and fuzzy logic system. For example, the quality expressed by 

 

correlation factor increases with increasing number of hidden 
nodes of neural network. However, if the parameters of neural 
network or fuzzy-logic system are not properly decided, 
substantially corrupted model can be developed. Such a case is 
shown in Fig. 8b. Here, the FFBP neural network contained large 
number of hidden nodes was trained. This large number of hidden 
nodes caused that the neural network model does not reflect the 
character of the analysed phenomenon.  
 
 

5. Summary 
 
Summarising the research presented in the paper the two 

assumed goals should be discussed. In the first case, an algorithm 
for processing axial drilling force has been developed. 
Developing such an algorithm we aimed at constraining the noise 
inherent to the drilling process and emphasising the information 
that could be useful for building a model of relationship between 
burr height and selected measured signal feature. The impact of 
the properly conducted data selection can be presented based on 
scatter diagrams that reflect model quality (Fig. 9). In Fig. 9a, 
scatter diagram representing model described with the 2 order 
polynomial is depicted. This model considers only selected 
cutting parameters, i.e. information on the state of cutting process 
expressed with measuring signals is not introduced. The second 
model basing on 4 order polynomial was developed with mean 
value of the processed signal of axial drilling force (Fig. 9b). The 
qualitative assessment of the two models already reveals the 
influence of information provided on-line by measuring signal. 
Satisfying correlation factor value of 0.964 was achieved in this 
case (Fig. 9b). Finally, we introduced cutting parameters and 
mean value of the measured signal into the model described with 
equation (1). Here, the correlation factor reached the highest value 
of 0.991 (Fig. 9c). 

The above description is related to analysis of data recorded 
during drilling with cutting speed vC=12 m/min. In the last step of 
the research, all available data was considered for burr formation 
modelling (Table 2). This approach fully reconfirmed conclusions 
and findings stated above. Also, artificial intelligence application 
can be justified based on results shown in Table 2. 

 

kkspksVBfWfH MAXWSZ /,,21          (1) 
kkspksVBvfWfH MAXCWSZ /,,,21           (2) 

where: 
HZ – burr height; 
f1 , f2 - the 4 order and 2 order polynomial, respectively; 
WWS - mean value of the processed axial drilling force signal; 
pks/kks - straight and corrected cutting edge; 

 - chip clearance angle; 
vC  - cutting speed; 
VBMAX – maximal flank wear of drills applied. 

 
Table 2.  
Burr formation models and respective correlation factors 

Model R 
HZ=f(vC, VBMAX, , pks/kks), the 2 order polynomial 0.789 
HZ=f(WWS), the 4 order polynomial  0.933 
HZ=f(WWS, vC, VBMAX, , pks/kks), equation (2) 0.974 
Fuzzy logic system with 5 inputs and 18 fuzzy rules 0.978 
FFBP neural network, structure 5-3-1 0.984 

 
The second goal of the presented research is related to the 

procedure applied for supporting the search for optimal 
parameters of signal processing methods. It is convenient to recall 
that we applied three feature selection methods based on FFBP 
neural network. The methods were expected to minimise time and 
effort that one would have to spend on reviewing of several 
combinations of analysed parameters. Based on the obtained 
results, some guidelines can be established in this case. Analysis 
of the recorded data must start obviously with calculations of 
different signal features for the signals processed with different 
smoothing widow widths. Then, the feature selection can be 
applied for assessing the influence of parameters of the signal 
processing methods (e.g. ). At this stage, one can already try to 
estimate importance of drill path length. After deciding about 
smoothing window widths, an analysis of relative importance of 
different signal features and confirmation of drill path length 
selection can be performed. Eventually, the final decision on the 
selection of the optimal drill path length and the most promising 
measured signal feature can be done.  
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Fig. 9. Scatter diagram of the measured and calculated burr height; a) HZ=f(VBMAX, , pks/kks) model described with the 2 order 
polynomial; b) HZ=f(WWS) model described with the 4 order polynomial; c) HZ=f(WWS, VBMAX, , pks/kks) model described with 
equation (1); vC = 12 m/min, drill path length 1.52 mm, case CF - Table 1 

5.	�Summary
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The presented research should not be considered completed. 
It can be noticed that the developed models need to be checked or 
improved in the case of practical application for burr height 
estimation. Such improvement can be done in different ways. 
It seems reasonable to enhance the models by adding other signal 
features or introducing other cutting parameters as model inputs. 
Also, analysis of other signals that can be measured during 
drilling is assumed as a future work. 
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