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Abstract
Purpose: Purpose of this paper is investigation of optimization strategies eligible for solving complex 
engineering design problems. An aim is to develop numerical algorithms for solving optimal design problems 
which may contain real and integer variables, a number of local extremes, linear- and non-linear constraints and 
multiple optimality criteria.
Design/methodology/approach: The methodology proposed for solving optimal design problems is based on 
integrated use of meta-modeling techniques and global optimization algorithms. Design of the complex and 
safety critical products is validated experimentally.
Findings: Hierarchically decomposed multistage optimization strategy for solving complex engineering 
design problems is developed. A number of different non-gradient methods and meta-modeling techniques has 
been evaluated and compared for certain class of engineering design problems. The developed optimization 
algorithms allows to predict the performance of the product (structure) for different design and configurations 
parameters as well as loading conditions.
Research limitations/implications: The results obtained can be applied for solving certain class of engineering 
design problems. The nano- and microstructure design of materials is not considered in current approach.
Practical implications: The methodology proposed is employed successfully for solving a number of practical 
problems arising from Estonian industry: design of car frontal protection system, double-curved surface forming 
process modeling, fixings for frameless glazed structures, optimal design of composite bathtub (large composite 
plastics), etc.
Originality/value: Developed numerical algorithms can be utilised for solving a wide class of complex 
optimization problems.
Keywords: Global optimization techniques; Response surface modeling; FEA
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1. Introduction 

 
Engineering product (structure) optimization process consists 

of three major supportive components: 
fast CAD tools for creation of geometry proposals, 

effective CAE tools for fast and accurate structural analysis 
and improvement of assessments, 
standards for geometry and process technology with the 
objective to transfer knowledge and experiences from the 
older projects to new projects.  

1.	�Introduction

The problems of product optimization discussed below could 
be summarized under term structural optimization and classified 
into topology, shape and sizing optimization [1,2]. 

Multilevel strategies and their variants address the 
multidiscipli-nary design optimization through a formal treatment 
of interdisciplinary couplings [3,4]. However, these techniques 
are issues of intensive research, the problems of convergence and 
effective application are yet not fully resolved. Haftka [5] 
proposed a quasi-separable bi-level optimization approach. The 
objective function in this approach of a system level is a synthesis 
or a composition of the optimal subsystem responses. Important 
task of subsystems in such an approach is the representation of 
optimal subsystem responses at the system level by surrogate 
models. 

In the case of the several contradictionary objectives the most 
general approach is application of the Pareto optimality concept, 
according to which all solutions on the Pareto front are optimal 
(the Pareto front represents the set of all “non-dominated” points). 
The shape of the Pareto front provides valuable information. 
However, the selection of an optimal solution is still complicated 
and depends on a number of factors, like the specific problem 
considered, additional information available, etc. [6-8].  

An alternate approach for solving multiple criteria analysis 
problems are physical programming techniques, according to 
which multiple objectives are combined into one objective and  
latter problem is solved as single objective optimization problem. 
Independent on methodology how the objective functions are 
combined into one objective (weighted summation, compromise 
programming, etc.), such an approach has some drawbacks. 
Namely, the relative importance of the objectives is not known in 
most of cases and the evaluation of the weights is complicated.  

Current study is focused on solving engineering optimization 
problems, which contain often real and integer variables, a 
number of local extremes, multiple optimality criteria. In latter 
case, the conventional approaches based on traditional gradient 
technique fail or perform poorly. In the following, an optimization 
approach that integrates meta-modeling and evolutionary 
algorithms is developed. 

Evolutionary algorithms are population-based stochastic 
search techniques simulating mechanisms of natural selection, 
genetics and evolution. The literature overview on evolutionary 
computing (EC) techniques in structural engineering can be found 
in [9-12], where different features of evolutionary algorithms 
(EA-s) are discussed and historical perspectives of EC are 
outlined. Historically, the GA-s, evolution strategies (ES) and 
evolutionary programming (EP) are three developed general 
approaches. The approaches differ in the types of generation - to - 
generation alterations and on computer representation of 
population. The fourth general approach - genetic programming 
(GP) is a method for automated creating of a computer program 
[9]. GP represents individuals as executable trees of code.  

The engineering design problems as rule contain finding the 
global optimum in the space with many local optima. 
Evolutionary algorithms including GA have property to escape 
the local extreme and have a better global perspective than the 
traditional gradient based methods [10]. A certain class of optimal 
design problems contains multiple global extremes i.e several 
solutions correspond to the same value of the objective function. 
Desirably all or as many as possible global extremes should be 

found. Obviously, in latter case the algorithms manipulating with 
population instead of single solution are preferred.  

However, manipulating with population instead of single 
solution has also some drawback - numerous evaluations of 
candidate solutions are necessary. For complex engineering 
problems, such evaluations are time consuming (capacious FEA, 
tests, etc.). The latter problem is solved most commonly by using 
meta-models. Various techniques including regression and 
interpolation tools (splines, least square regression, artificial 
neural network, kriging, etc) can be utilized for building surrogate 
models [13,14]. An accuracy and computational cost are basic 
characteristics, which must be considered in selection of the 
appropriate meta-models [14]. 

GA-s have been developed rapidly during last decades as an 
effective and simple optimization technique. One of the 
drawbacks of the traditional GA is also a ratchet effect (crossover 
cannot introduce new gene values). In order to overcome the 
drawbacks of the traditional GA a large number of improvements 
is provided (CHC GA, adaptive GA [15], niche GA and hybrid 
GA [16-17], etc.). In order to achieve higher accuracy, the real-
coded GA operators are used in engineering design instead of 
traditional binary operators (more efficient for operating with real 
numbers, the chromosome is implemented by a vector of floating-
point numbers) [18-19]. The development of evolutionary 
algorithms for multi-objective optimization problems [20-21] is 
another actual topic in engineering design. 

In the current study Artificial Neural Networks (ANN) and real-
coded GA are used for performing meta-modeling and search for a 
global extreme, respectively. Thus, the number of function 
evaluations is reduced and convergence to the global extreme can 
be expected. In order to speed up algorithm, the real-coded GA is 
combined with gradient method (steepest descent). In this hybrid 
GA the global search is performed by the use of real-coded GA and 
local search by the use of gradient method. Some modifications to 
hybrid GA are mode depending on the character of particular 
optimization problem solved. The structural analysis of the car 
frontal protection system (case study 1) and composite bathtub 
(case study 2) is performed by the use of FEM software packages 
LS-DYNA and HyperWorks, respectively. The multistage 
optimization procedure has been developed. In the case of first 
problem considered (design of car frontal protection system) an 
alternative numerical approach is developed by the use of finite 
element optimization package LS-OPT and the obtained numerical 
results are validated against experimental test results [8,22]. 

 
 

2. Multi stage optimization model 
In general the considered engineering optimization problems can 

be  divided into the following subtasks (stages): 
evaluation of the objective functions for given vector of design 
variables x (includes FEA); 
response surface modeling (meta-modeling); 
global optimization using multiple criteria analysis techniques 
discussed in details below. 

Note, that the first stage: evaluation of the objective functions may 
include structural analysis and optimization, topology, shape and size 
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optimization, etc. For example in the case of composite bathtub, the 
first stage contains free-size optimization for a given set of input data.  

In response surface method (RSM) the design surface is fitted to 
the response values using regression analysis. Least squares 
approximations are used for this purpose most commonly. In the 
current paper, the generalized regression neural networks (NN) are 
used for the surface fitting. In the case of car frontal protection system 
and composite bathtub the output data obtained from FE analysis are 
treated as response values, since in the case of double-curved surface 
forming process modeling the response values for meta-model are 
obtained from experiments.  Let us proceed from the predetermined 
set of designs.  The surface constructed by the use of NN does not 
normally contain the given response values (similarity with least-
squares method in this respect). An approach proposed is based on the 
use of the MATLAB neural network toolbox and authors written C++ 
code. A generated two-layer network has radial basis transfer function 
neurons in the first and the linear transfer function neurons in the 
second layer. Similar two-layer (one hidden layer) network is 
generated also in FE software package LS-OPT for composing 
response surface. The response surface values are generated 
simultaneously  for all response quantities.  
Note that in the current study the meta-modeling technique is applied 
not only for building objective (fitness) functions, but also for 
building some constraint functions (needed to be evaluated from FEA 
or experiments). It should also be mentioned that the implementation 
of the neural network based model was much simpler and more 
flexible than the alternative solution based on use of B-splines. 
 

 
 
Fig. 1. Lower legform impact testing (a - Legform impactor, b - 
Frontal protection system, V - velocity of impactor) 
 

Let us proceed form surface modeled by the use of neural 
networks. In order to determine the minimum value of the 
objective function the hybrid GA containing local and global level 
search has been treated. The global and local level search has 
been performed by the use of GA and steepest descent methods, 
respectively. In order to achieve higher accuracy the real-coded 
algorithm is used. The best individual (solution) of the population 
generated by GA is used as an initial value of the gradient method 
(local level search). In the cases where elite population (set of 
solutions obtained by fitness-based selection rule) contains 
individuals, whose chromosomes differ substantially, it is 
reasonable to perform local search for all these individuals. Thus, 
the number local searches necessary depend on a result of the 
global search. The local search may be considered as design 
improvement, since the global search realized by the use of GA 

may converge to solution close to global optimum (exact 
optimum is not achieved), also the gradient method is less time 
consuming. The final solution is determined by comparison of the 
results of all local searches performed (selection is based on value 
of objective function). The nonlinear constraints are considered 
through penalty terms. 

The solution is implemented in MATLAB code. Note that the 
2D array population should be sorted using the values of the 
fitness function given in array scores before selection of the elite 
population (initially unsorted). 
An alternative solution of the problem 1 (design of car frontal 
protection system) is realized by the use of FE software package 
LS-OPT [23]. The latter solution is based on the use of leap-frog 
algorithm. 
 
 
3. Case study 1: optimal design of car 
frontal protection system 
 

Main attention is paid to optimal design of brackets. Preliminary 
configuration of the bracket is given by the manufacturer. The 
solution method proposed for considered optimization problem is 
based on the use of FEA system. An analysis of car-pedestrian 
collision situation is performed by the use of LS-DYNA explicit 
solver and the stiffness analysis with LS-DYNA implicit solver. 

 
 

3.1. Problem formulation 
 
The directive 2005/66/EC defines several different tests for 

frontal protection system. As it can be seen, the tubular extra 
accessories that are mounted to the front of vehicle will worsen 
considerably the situation for pedestrian in case of accident, so 
only minimum requirements can be met without adding 
sophisticated systems (like airbags, etc). Minimum test is lower 
legform impact test. Upper legform test is required for systems 
with height over 500mm. In the current study, it is assumed that 
the height of the designed car frontal protection system is less 
than 500 mm and main attention is paid to the safety requirements 
proceeding from lower legform test (see Figure 1). 

In the test the impactor (a in Figure 1) has been shot at the 
speed of 11.1 m/s at the frontal protection system of the vehicle. 
There are three types of sensors mounted inside the impactor: 
acceleration sensor, bending angle sensor and shear displacement 
sensor. According to the directive 2005/66/EC (Directive 2005): 
 the maximum dynamic knee bending angle shall not exceed 

21.0°; 
 the maximum dynamic knee shearing displacement shall not 

exceed 6.0 mm; 
 the acceleration measured at the upper end of the tibia shall 

not exceed 200 g. 
It is assumed above that the total permissible mass of the 

vehicle is less than 2500 kg. In the case where the total 
permissible mass of the vehicle exceeds 2500 kg, the 
corresponding maximum values of the knee bending angle, knee 
shearing displacement and acceleration measured at the upper end 
of the tibia are 26.0°, 7.5 mm and 250 g, respectively. 

3.	�Case study 1: optimal 
design of car frontal 
protection system

3.1.	�Problem formulation

With bending angle and shear displacement it is easier to fit 
between the limits, with acceleration limit the situation is more 
complicated. 

In the literature, different kinds of energy absorbing structures 
(rings, laminates, honeycombs, etc.) can be found, materials vary 
from solid metals to composites and cellular materials [24-26]. 
Unfortunately, most of structures absorb energy in an unstable 
manner. The two principal different types of energy absorbing 
structures are classified as follows: type I structure with a flat-
topped load-displacement curve and type II structure with a high 
peak of reaction force when impact loading starts followed by 
smaller peaks or more constant level of reaction forces. More 
desirable situation would be if the reaction force increased 
steadily to some predefined level and would remain constant on 
this level [26]. In the current study the energy absorbing structure 
of type I (bracket) has been redesigned by changing geometry, 
adding cutouts, folds and performing parameters design. The 
resulting bracket belongs to energy absorbing structure of type II. 
In order to decrease the acceleration, optimal design of tubular 
parts and brackets has to be addressed.  

The current study is focused on the design of  brackets located 
between the vehicle bamper and the tubular extra accessories that 
are mounted to the front of vehicle. The model proposed consider 
the car frontal protection system and applied forces only. The 
bracket is designed as main energy absorbing component (see 
Figure 2). Initial design of the energy absorbing component 
depicted in Figure 2 is given by the manufacturer. Thus, the 
topology is predefined ro a certain extent by the manufacturer and 
main task is to search for an optimal set of design variables a, b, c, 
d and e (see Figure 2). However, some corrections in topology are 
available (for example the fold: form, location; etc.). The 
properties of the tubes are selected as appropriate as 
technologically possible (light structure, thin walls, etc), detailed 
design of tubes is omitted. 
 

 
 
Fig. 2. Energy absorbing component (a, b, c, d and e are design 
variables) 
 

In the following, two different optimality criteria are 
discussed. The objective functions corresponding to these criteria 
can be expressed as 
a) minimization of the peak force F (peak acceleration) 
 

)x,t(Fmax)x(f
t1 ; (1) 

b) minimization of the difference between maximal and minimal 
force  
 

)x,t(Fmin)x,t(Fmax)x(f
tt2 . (2) 

In (1)-(2) t  stands for time, )x,...,x,x(x n21  is a vector 

of independent design variables and )x,t(F  stands for axial 
(frontal) force component.  

In order to cover both criteria the multi-criteria optimization 
problem is formulated and solved applying the weighted 
summation and compromise programming analysis techniques. 
 
 
3.2. Finite element analysis 
 

LS-DYNA software was utilized for numerical analysis. Fully 
integrated shell elements are considered. The stress-strain 
behaviour is modeled with multi-linear approximation. In order to 
consider plastic anisotropy the Hill’s second order yield criterion 
is employed. The FEA is performed separately for crash 
simulation and stiffness analysis. The total number of simulations 
depends on number of design variables and on grid density, fixed 
in the stage of simulation data design. The dynamic and static 
analysis is performed with the same sets of the simulation data in 
order to get complete set of output data. The output data used in 
further optimization procedure contains extreme values of the 
frontal force component and displacements in y-z plane obtained 
from the dynamic and static FE analysis, respectively.  

In order to validate the FEA models the experimental study 
was carried out. Several versions of the component shown in 
Figure 2 were tested (the number of design variables used in the 
case of different approaches was from 4 up to 8). The preliminary 
estimates of the force components and deformation modes are 
obtained from the compression tests of the brackets performed on 
universal testing equipment. In Figure 3 the load displacement 
curves obtained from experimental tests and FEA are compared.  
The design parameters values are taken as a=1.6 mm, b=12 mm, 
c=6 mm and d=10 mm (see Figure 2). The folds with triangular 
shape (instead of convex arc) are considered and instead of the 
design parameter e given in Figure 2 the bend angle with the 
value 5 degrees is used. 
 

 
 

Fig. 3. Load-displacement curves: experimental and FEA 
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building some constraint functions (needed to be evaluated from FEA 
or experiments). It should also be mentioned that the implementation 
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Fig. 1. Lower legform impact testing (a - Legform impactor, b - 
Frontal protection system, V - velocity of impactor) 
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are mounted to the front of vehicle. The model proposed consider 
the car frontal protection system and applied forces only. The 
bracket is designed as main energy absorbing component (see 
Figure 2). Initial design of the energy absorbing component 
depicted in Figure 2 is given by the manufacturer. Thus, the 
topology is predefined ro a certain extent by the manufacturer and 
main task is to search for an optimal set of design variables a, b, c, 
d and e (see Figure 2). However, some corrections in topology are 
available (for example the fold: form, location; etc.). The 
properties of the tubes are selected as appropriate as 
technologically possible (light structure, thin walls, etc), detailed 
design of tubes is omitted. 
 

 
 
Fig. 2. Energy absorbing component (a, b, c, d and e are design 
variables) 
 

In the following, two different optimality criteria are 
discussed. The objective functions corresponding to these criteria 
can be expressed as 
a) minimization of the peak force F (peak acceleration) 
 

)x,t(Fmax)x(f
t1 ; (1) 

b) minimization of the difference between maximal and minimal 
force  
 

)x,t(Fmin)x,t(Fmax)x(f
tt2 . (2) 

In (1)-(2) t  stands for time, )x,...,x,x(x n21  is a vector 

of independent design variables and )x,t(F  stands for axial 
(frontal) force component.  

In order to cover both criteria the multi-criteria optimization 
problem is formulated and solved applying the weighted 
summation and compromise programming analysis techniques. 
 
 
3.2. Finite element analysis 
 

LS-DYNA software was utilized for numerical analysis. Fully 
integrated shell elements are considered. The stress-strain 
behaviour is modeled with multi-linear approximation. In order to 
consider plastic anisotropy the Hill’s second order yield criterion 
is employed. The FEA is performed separately for crash 
simulation and stiffness analysis. The total number of simulations 
depends on number of design variables and on grid density, fixed 
in the stage of simulation data design. The dynamic and static 
analysis is performed with the same sets of the simulation data in 
order to get complete set of output data. The output data used in 
further optimization procedure contains extreme values of the 
frontal force component and displacements in y-z plane obtained 
from the dynamic and static FE analysis, respectively.  

In order to validate the FEA models the experimental study 
was carried out. Several versions of the component shown in 
Figure 2 were tested (the number of design variables used in the 
case of different approaches was from 4 up to 8). The preliminary 
estimates of the force components and deformation modes are 
obtained from the compression tests of the brackets performed on 
universal testing equipment. In Figure 3 the load displacement 
curves obtained from experimental tests and FEA are compared.  
The design parameters values are taken as a=1.6 mm, b=12 mm, 
c=6 mm and d=10 mm (see Figure 2). The folds with triangular 
shape (instead of convex arc) are considered and instead of the 
design parameter e given in Figure 2 the bend angle with the 
value 5 degrees is used. 
 

 
 

Fig. 3. Load-displacement curves: experimental and FEA 

3.2.	�Finite element analysis
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It can be seen from Figure 6 that the experimental and FEA 
results are found to be in good agreement, the peak values of the 
reaction force and also the shapes of the curves are close. 
 
 
3.3. Numerical and experimental results 
 

The limitation on acceleration (or corresponding force 
component) appears to be the most critical. For that reason the force 
component 1f  is considered as a dominating term in an optimality 
criterion. As the result of design process, the maximum value of the 
frontal force component 1f  is reduced more than 4 times in 
comparison with reference solution. The reference solution was 
chosen with reserve since the predicting of the value of y-z 
displacement   (constraint) corresponding to a certain set of design 
variables is extremely complicated. In Figure 4 the frontal force 
component 1f , corresponding to initial (reference) and optimal sets 
of design variables, is given, respectively. All constraints are 
fulfilled in the case of both designs. Note that energy absorption is 
twice higher in the case of initial design. The latter fact can be 
explained with reduced dimensions of the component. 
 

 
 
Fig. 4. Force - time diagram: reference solution and the optimal 
design 
 

 
 

Fig. 5. The final assembled product 
 

It can be seen from Figure 4 that the shape of the force curve 
corresponding to the optimal design is quite similar with the shape 
of a curve corresponding to energy absorber of type II, described 
above.  

4. Case study 2: optimal design of 
composite bathtub 
 

The objective is the optimization of structure and 
manufacturing processes of the composite plastic bathtub. The 
structural analysis of the product is performed with FEA. The 
optimal thickness distribution is determined with free size 
optimization. The final properties of the part are determined by 
minimizing the cost and production time simultaneously. 
 
 
4.1. Problem statement 
 

The current paper is concentrated on design of derivative 
products. For finding out optimal technology route we have to cut 
down the structure of the technology process into different 
process segments, meaning that we have to solve different sub 
systems, like finding out the optimal vacuum forming technology, 
the technology for post-forming operations (trimming, drilling the 
slots and cut-outs into the part, decoration, printing, etc), 
strengthening (reinforcing) and assembly. The bathtub is 
produced in two stages - in the first stage the shell is produced by 
vacuum forming, and in the second stage the shell is strengthened 
by adding glass-fiber-epoxy layer on the one side. Current study 
is focused on strengthening of the shell by adding glass-fiber-
epoxy layer and the first stage -vacuum forming process is 
described briefly. 

The vacuum forming part thinning process has been analyzed 
with different materials like ABS, PMMA white 2000BM 1516, 
polycarbonate ICE (UV) and acrylic FF0013 plexiglass. In the 
following, the acrylic FF0013 plexiglass formed at the 
temperature 320-340C is considered (heating time 6 min and 
cooling time 2 min). The sample of the final assembled product is 
shown in Figure 5. 

In vacuum forming the thinning is a natural consequence of 
the deformation conditions. The thickness variations are 
potentially large for a part. Therefore, it is often important to 
control the thickness variations in order to meet functional 
requirements of the part. The values of thinning of the plastic 
sheet in the forming operations can be determined from 
experience, special tests or simulations. The experimental tests 
have been performed in order to analyze the wall thickness 
reduction in certain materials. The results of analysis for 
plexiglass are given in Figure 6. 
 

 
 

Fig. 6. Wall thickness reduction in a 3.2 mm thick blank 
 

It can be seen from Figure 6 that the thickness reduction is 
maximal in bottom area. Obviously, the strengthening of the shell 

4.	�Case study 2: optimal 
design of composite bathtub

3.3.	�Numerical and experimental 
results

4.1.	�Problem statement

is necessary and it can be performed in both stages of 
manufacturing process. In the following the detailed attention is 
paid to reinforcement of the shell (adding glass-fiber-epoxy layer) 
since the stiffness of the reinforcement layer is significantly 
higher than acrylic layer. 

The reinforcement problem of the bathtub shell can be 
formulated as a multi-objective optimization problem and 
expressed in mathematical forms as: 

 
, 

, (3) 
. 

 
subjected to linear and nonlinear constraints. In (3) C(x) and T(x) 
are cost of the glass-fiber-epoxy layer and manufacturing time, 
respectively and x is a vector of design variables. The linear and 
nonlinear constraints proceed from technological (maximum layer 
thickness), exploitation (displacement limit) and safety (stress 
limit) considerations. Since the units used to measure the 
objectives F1(x) and F2(x) are different (cost and time), it is 
reasonable to represent the objectives in terms of relative 
deviation i.e. 
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Obviously, the objective functions f1(x) and f2(x) are defined 

in interval [0,1]. 
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Fig. 7. Objective function (weighted summation) vs. maximum 
thickness of the reinforcement layer 
 
 
4.2. Results and discussion 
 

The values of the objective function corresponding to 
weighted summation technique are pointed out in Figure 7, where 
dependence on maximum thickness of the reinforcement layer is 
shown. The values of the weight w1 corresponding to the first 
criterion (cost) are varied from 0.2 to 0.8. As it can be seen from  

Figure 7, the shape of the curves describing objective function 
depend on the values of the weights, but the extreme value of the 
objective is reached in the case of same value of the maximum 
thickness of the reinforcement layer. The objective decreases in 
same range where the material volume decreases, after that the 
material volume approaches to constant value, but the objective 
increases significantly. The latter fact is caused due to additional 
drying expenses (layer-wise covering technology is used due to 
technological limits on maximum layer thickness in one-time 
layer setup, thus, larger total thickness means that larger number 
of sub-layers should be used). Similar values of the objective 
function are obtained in the case of compromise programming 
technique (omitted for conciseness sake). 

The bathtub with optimal thickness distribution of 
reinforcement layer corresponding to extreme value of the 
objective function (compromise programming and weighted 
summation technologies) is shown in Figure 8.  
 

 
 

Fig. 8. The optimal thickness distribution of reinforcement 
 

It appears that the reinforcement layer is the thickest in areas 
where the local loading is applied (at the middle of the bottom 
area) and bottom-wall transitional areas (see Figure 8). 
 
 
5. Case study 3: double-curved surface 
forming process modeling 
 

There are several industries where increasingly higher surface 
accuracy requirements are posed for double-curved surfaces. One 
industrial application is parabolic reflective surface of satellite 
communication earth-station antennas reflectors. The forming 
method considered below is based on use of the adjustable 
forming surface which supports reflective surface. Adjustments of 
the surface are available in fixed set of points and in directions 
normal to the surface only. 
 
 
5.1. Problem statement 
 

In order to achieve the main goal- increase an accuracy of the 
double-curved surface forming process the procedure for determining 
the coordinates of the adjustment points has been developed.  
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It can be seen from Figure 6 that the experimental and FEA 
results are found to be in good agreement, the peak values of the 
reaction force and also the shapes of the curves are close. 
 
 
3.3. Numerical and experimental results 
 

The limitation on acceleration (or corresponding force 
component) appears to be the most critical. For that reason the force 
component 1f  is considered as a dominating term in an optimality 
criterion. As the result of design process, the maximum value of the 
frontal force component 1f  is reduced more than 4 times in 
comparison with reference solution. The reference solution was 
chosen with reserve since the predicting of the value of y-z 
displacement   (constraint) corresponding to a certain set of design 
variables is extremely complicated. In Figure 4 the frontal force 
component 1f , corresponding to initial (reference) and optimal sets 
of design variables, is given, respectively. All constraints are 
fulfilled in the case of both designs. Note that energy absorption is 
twice higher in the case of initial design. The latter fact can be 
explained with reduced dimensions of the component. 
 

 
 
Fig. 4. Force - time diagram: reference solution and the optimal 
design 
 

 
 

Fig. 5. The final assembled product 
 

It can be seen from Figure 4 that the shape of the force curve 
corresponding to the optimal design is quite similar with the shape 
of a curve corresponding to energy absorber of type II, described 
above.  

4. Case study 2: optimal design of 
composite bathtub 
 

The objective is the optimization of structure and 
manufacturing processes of the composite plastic bathtub. The 
structural analysis of the product is performed with FEA. The 
optimal thickness distribution is determined with free size 
optimization. The final properties of the part are determined by 
minimizing the cost and production time simultaneously. 
 
 
4.1. Problem statement 
 

The current paper is concentrated on design of derivative 
products. For finding out optimal technology route we have to cut 
down the structure of the technology process into different 
process segments, meaning that we have to solve different sub 
systems, like finding out the optimal vacuum forming technology, 
the technology for post-forming operations (trimming, drilling the 
slots and cut-outs into the part, decoration, printing, etc), 
strengthening (reinforcing) and assembly. The bathtub is 
produced in two stages - in the first stage the shell is produced by 
vacuum forming, and in the second stage the shell is strengthened 
by adding glass-fiber-epoxy layer on the one side. Current study 
is focused on strengthening of the shell by adding glass-fiber-
epoxy layer and the first stage -vacuum forming process is 
described briefly. 

The vacuum forming part thinning process has been analyzed 
with different materials like ABS, PMMA white 2000BM 1516, 
polycarbonate ICE (UV) and acrylic FF0013 plexiglass. In the 
following, the acrylic FF0013 plexiglass formed at the 
temperature 320-340C is considered (heating time 6 min and 
cooling time 2 min). The sample of the final assembled product is 
shown in Figure 5. 

In vacuum forming the thinning is a natural consequence of 
the deformation conditions. The thickness variations are 
potentially large for a part. Therefore, it is often important to 
control the thickness variations in order to meet functional 
requirements of the part. The values of thinning of the plastic 
sheet in the forming operations can be determined from 
experience, special tests or simulations. The experimental tests 
have been performed in order to analyze the wall thickness 
reduction in certain materials. The results of analysis for 
plexiglass are given in Figure 6. 
 

 
 

Fig. 6. Wall thickness reduction in a 3.2 mm thick blank 
 

It can be seen from Figure 6 that the thickness reduction is 
maximal in bottom area. Obviously, the strengthening of the shell 

is necessary and it can be performed in both stages of 
manufacturing process. In the following the detailed attention is 
paid to reinforcement of the shell (adding glass-fiber-epoxy layer) 
since the stiffness of the reinforcement layer is significantly 
higher than acrylic layer. 

The reinforcement problem of the bathtub shell can be 
formulated as a multi-objective optimization problem and 
expressed in mathematical forms as: 
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subjected to linear and nonlinear constraints. In (3) C(x) and T(x) 
are cost of the glass-fiber-epoxy layer and manufacturing time, 
respectively and x is a vector of design variables. The linear and 
nonlinear constraints proceed from technological (maximum layer 
thickness), exploitation (displacement limit) and safety (stress 
limit) considerations. Since the units used to measure the 
objectives F1(x) and F2(x) are different (cost and time), it is 
reasonable to represent the objectives in terms of relative 
deviation i.e. 
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Fig. 7. Objective function (weighted summation) vs. maximum 
thickness of the reinforcement layer 
 
 
4.2. Results and discussion 
 

The values of the objective function corresponding to 
weighted summation technique are pointed out in Figure 7, where 
dependence on maximum thickness of the reinforcement layer is 
shown. The values of the weight w1 corresponding to the first 
criterion (cost) are varied from 0.2 to 0.8. As it can be seen from  

Figure 7, the shape of the curves describing objective function 
depend on the values of the weights, but the extreme value of the 
objective is reached in the case of same value of the maximum 
thickness of the reinforcement layer. The objective decreases in 
same range where the material volume decreases, after that the 
material volume approaches to constant value, but the objective 
increases significantly. The latter fact is caused due to additional 
drying expenses (layer-wise covering technology is used due to 
technological limits on maximum layer thickness in one-time 
layer setup, thus, larger total thickness means that larger number 
of sub-layers should be used). Similar values of the objective 
function are obtained in the case of compromise programming 
technique (omitted for conciseness sake). 

The bathtub with optimal thickness distribution of 
reinforcement layer corresponding to extreme value of the 
objective function (compromise programming and weighted 
summation technologies) is shown in Figure 8.  
 

 
 

Fig. 8. The optimal thickness distribution of reinforcement 
 

It appears that the reinforcement layer is the thickest in areas 
where the local loading is applied (at the middle of the bottom 
area) and bottom-wall transitional areas (see Figure 8). 
 
 
5. Case study 3: double-curved surface 
forming process modeling 
 

There are several industries where increasingly higher surface 
accuracy requirements are posed for double-curved surfaces. One 
industrial application is parabolic reflective surface of satellite 
communication earth-station antennas reflectors. The forming 
method considered below is based on use of the adjustable 
forming surface which supports reflective surface. Adjustments of 
the surface are available in fixed set of points and in directions 
normal to the surface only. 
 
 
5.1. Problem statement 
 

In order to achieve the main goal- increase an accuracy of the 
double-curved surface forming process the procedure for determining 
the coordinates of the adjustment points has been developed.  

5.	�Case study 3: double-
curved surface forming 
process modeling

4.2.	�Results and discussion

5.1.	�Problem statement
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The main subtasks of the procedure can be outlines as: 
 deviation measuring in given points, 
 response surface modeling, 
 computing coordinates corresponding to minimum deviation 

of reflective surface, 
 coordinate correction for adjustment points.  

In real adjustment process the coordinates in normal 
directions are considered as input data and the deviations of the 
reflective surface points as output data (results).  

The root mean square (RMS) value of the deviations of the 
parabolic reflective surface of satellite communication earth-
station antennas reflectors is subjected to minimization 
 

, (5) 
 
where   and  are the values of the coordinates of reflective 
surface corresponding to measurement results and zero deviation, 
respectively. As described above, each value of the function  
corresponds to one panel formed. Thus, the experimental data, 
gathered at the beginning of the forming process of new type of 
panels is limited and response modelling necessary. 
 
 
5.2. Results and discussion 
 

The deviation of the reflective surface has been minimized. 
However, the zero deviations are not achieved due to measuring, 
modelling, etc. errors. The developed coordinate correction algorithm 
is shown in Figure 9. 

Employing the proposed coordinate correction algorithm, allows 
to reduce the number of experiments performed (panels formed) up to 
required accuracy has been achieved. The problem considered is 
specific due to limited dataset for response modelling at the beginning 
of the new type panel forming. 
 
 
6. Case study 4: design of fixings for 
frameless glazed structures 
 

Attaching the glass to the structures using bolted fittings 
directly connected through holes in the glass is used widely, since it 
allows to improve transparency of the connection. The point 
supported structural glass designs considered involve large and 
relatively thin lites of glass. The stress-strain state of the glass lite is 
analysed by use of FEA (ANSYS). Non-linear plate theory is 
employed, because the deflections of the glass lite may exceed half 
of its thickness.  

The following sub goals are considered in optimal design of 
fixings: 
 determination of optimal locations and dimensions of the fixing 

holes (topology optimization), 
 optimal design of fixing element (to guarantee elastic behaviour 

of the fixing element in certain loading conditions; rigid 
behaviour of the fixing element may cause failure of the glass 
lite). 
The FEA model for analysis of the fixing element and glass lite 

structure has been developed. However, solving optimal design 
tasks described above is currently in progress. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Coordinate corrections procedure 
 
 

7.Conclusions 
 

The artificial neural networks and hybrid genetic algorithm 
are used together for solving a number of quite different 
engineering design problems including design of car frontal 
protection system, design of composite bathtub, design of double-
curved surface forming process modeling, design of fixings for 
frameless glazed structures. It can be concluded that the 
optimization algorithm proposed has been shown good 
performance with respect to convergence to global extreme 
(responsibility of the global level search, GA) and accuracy 
(responsibility of the local level search, gradient method). Certain 
adaption of the algorithm was necessary depending on character 
of particular optimization problem considered (GA operators 
used, constraint handling, parameters tuning). The algorithm has 
been implemented in MATLAB and C++ code. 
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The main subtasks of the procedure can be outlines as: 
 deviation measuring in given points, 
 response surface modeling, 
 computing coordinates corresponding to minimum deviation 

of reflective surface, 
 coordinate correction for adjustment points.  

In real adjustment process the coordinates in normal 
directions are considered as input data and the deviations of the 
reflective surface points as output data (results).  

The root mean square (RMS) value of the deviations of the 
parabolic reflective surface of satellite communication earth-
station antennas reflectors is subjected to minimization 
 

, (5) 
 
where   and  are the values of the coordinates of reflective 
surface corresponding to measurement results and zero deviation, 
respectively. As described above, each value of the function  
corresponds to one panel formed. Thus, the experimental data, 
gathered at the beginning of the forming process of new type of 
panels is limited and response modelling necessary. 
 
 
5.2. Results and discussion 
 

The deviation of the reflective surface has been minimized. 
However, the zero deviations are not achieved due to measuring, 
modelling, etc. errors. The developed coordinate correction algorithm 
is shown in Figure 9. 

Employing the proposed coordinate correction algorithm, allows 
to reduce the number of experiments performed (panels formed) up to 
required accuracy has been achieved. The problem considered is 
specific due to limited dataset for response modelling at the beginning 
of the new type panel forming. 
 
 
6. Case study 4: design of fixings for 
frameless glazed structures 
 

Attaching the glass to the structures using bolted fittings 
directly connected through holes in the glass is used widely, since it 
allows to improve transparency of the connection. The point 
supported structural glass designs considered involve large and 
relatively thin lites of glass. The stress-strain state of the glass lite is 
analysed by use of FEA (ANSYS). Non-linear plate theory is 
employed, because the deflections of the glass lite may exceed half 
of its thickness.  

The following sub goals are considered in optimal design of 
fixings: 
 determination of optimal locations and dimensions of the fixing 

holes (topology optimization), 
 optimal design of fixing element (to guarantee elastic behaviour 

of the fixing element in certain loading conditions; rigid 
behaviour of the fixing element may cause failure of the glass 
lite). 
The FEA model for analysis of the fixing element and glass lite 

structure has been developed. However, solving optimal design 
tasks described above is currently in progress. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Coordinate corrections procedure 
 
 

7.Conclusions 
 

The artificial neural networks and hybrid genetic algorithm 
are used together for solving a number of quite different 
engineering design problems including design of car frontal 
protection system, design of composite bathtub, design of double-
curved surface forming process modeling, design of fixings for 
frameless glazed structures. It can be concluded that the 
optimization algorithm proposed has been shown good 
performance with respect to convergence to global extreme 
(responsibility of the global level search, GA) and accuracy 
(responsibility of the local level search, gradient method). Certain 
adaption of the algorithm was necessary depending on character 
of particular optimization problem considered (GA operators 
used, constraint handling, parameters tuning). The algorithm has 
been implemented in MATLAB and C++ code. 
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