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Analysis and modelling

Abstract
Purpose: The paper consists of two parts. The first part presents and discusses a process of formulation and 
identification of First-Principle  Data-Driven (FPDD) models, while the second part demonstrates numerical 
examples of identification of FPDD models.
Design/methodology/approach: First-Principle (FP) model is formulated using a system of continuous ordinary 
differential equations capturing usually nonlinear relations among variables of the model. The considering model applies 
three categories of parameters: geometrical, physical and phenomenological. Geometrical and physical parameters are 
deduced from construction or operational documentation. The phenomenological parameters are the adjustable ones, 
which are estimated or adjusted based on their roughly known values, e.g. friction/damping coefficients.
Findings: A few phenomenological parameters were successfully estimated from numerically generated data. The error 
between the true and estimated value of the parameter occurred, however its magnitude is low at level below 2%.
Research limitations/implications: Adjusting a model to data is, in most cases, a non-convex optimization 
problem and the criterion function may have several local minima. This is a case when multiple parameters are 
simultaneously estimated.
Practical implications: FPDD models are an excellent tool for understanding, optimizing, designing, and 
diagnosing technical systems since they are updatable using operational measurements. This opens application 
area, for example, for model-based design and early warning diagnostics.
Originality/value: First-Principle (FP) models are frequently adjusted by trial-and-error, which can lead to 
non-optimal results. In order to avoid deficiencies of the trial-and-error approach, a formalized mathematical 
method using optimization techniques to minimize the error criterion, and find optimal values of tunable model 
parameters, was proposed and demonstrated in this work.
Keywords: First-Principle model; Data Driven model; Grey-box; Servo-hydraulic system
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1. Introduction 
 

The initial phase in modeling of a technical system is 
collecting and systematic treatment of available knowledge [1-6]. 
The a priori knowledge about a given phenomenon comes from 
the analysis, comprising of finding all possible connections to 
other phenomena and physical laws, preceding the modeling [7-
12]. The a priori knowledge is of key importance in modeling 
although its availability is always limited by the complexity of the 
physical system [3,8]. Even if the governing physical principia are 
known, it is usually difficult to formulate the specific 
relationships and obtain particular values of the parameters. 
Availability of the a priori knowledge and the modeling purpose 
determine the following: (i) the final type of the model, (ii) the 
accuracy requirements, (iii) the type of specific modeling 
procedure, (iv) the complexity of the model and lastly, (v) the 
method and the cost of its realization. According to the degree to 
which the a priori knowledge is available, then either a first-
principle or a data-driven model, or a combination of both, can be 
applied (cf. Fig. 1). First-principle (FP) models use understanding 
of the system underlying physics to derive its mathematical 
representation. FP models are expensive in development since 
expertise in the area of knowledge at the advanced level is 
required to derive equations from physical laws, while data-driven 
(DD) models use system test data to derive its mathematical 
representation. The advantage of the former approach is the depth 
of the insight into the behavior of the system and thus ability to 
predict the performance, while the advantage of the latter is the 
speed in which an accurate model can be constructed and 
confidence gained thanks to the use of the data obtained from the 
actual system. The difficulty of the former approach lies in the 
determination of the phenomenological parameters like the 
damping or the heat transfer coefficient. FP models are frequently 
adjusted by trial-and-error, which can lead to non-optimal results. 
On the other hand, the disadvantage of DD models is the need to 
handle multiple data sets in order to cover the range of system 
operation. 
 
 

 
 
Fig. 1. A servo-hydraulic test-rig used in experimental investigations 

The goal is therefore to find a compromise and propose a 
combined first-principle data-driven (FPDD) model. FPDD 
models require a formal approach which allows the model 
parameters to be updated according to the operational data. In 
order to avoid the drawbacks of trial-and-error approaches, a 
formalized mathematical method using optimization techniques to 
minimize the error criterion is proposed for FPDD models. It is 
believed that the smaller the number of updating model 
parameters, the more accurate the model and the faster the 
convergence of the algorithm used for model adjustment. In turn, 
the application scope of an FPDD model is wide-ranging, 
including the optimization and diagnostics of technical systems 
where a method of fast model update is essential. 
 
 

2. Taxonomy of models 
 

The taxonomy of models regarding a priori available 
knowledge of the technical system was proposed in [13] and relies 
on the observation that, in many industrial processes, first-
principle or heuristic, yet incomplete knowledge about the system 
exists. The taxonomy focuses on the way of incorporating a priori 
knowledge into a model (Table 1). 

The first methodology, constrained black-box identification 
based on regression techniques, originates from the black-box 
identification frame, where an a priori knowledge is incorporated 
by imposing constraints on the model parameters. The following 
is the justification of this approach; a simple continuous model 
can be transformed into a corresponding discrete time model and 
known restrictions of the continuous model, such as process 
stability and step response, can be used to define limits placed on 
the static gain and the time constants, which are imposed on the 
parameters of the discrete model. A second methodology, the 
semi-physical modeling, makes use of case specific nonlinear 
transformations of measured input/output process signals [13], 
e.g. a nonlinear sensor characteristic. A Wiener-Hammerstein 
model is a representative of this class of models [14]. 
Transformed signals are then used to estimate unknown 
parameters of a linear black-box model, for instance an ARMAX-
type model. 

A third methodology, namely the analytical modeling, is 
based on a basic model originating from mathematical relations 
derived from the first-principle equations. Analytical modeling 
deals with lumped and distributed parameter systems. Lumped-
parameter models are the most commonly considered in this 
approach. Nonetheless, spatially distributed phenomena have 
significant influence on many chemical and thermodynamic 
processes, for instance on processes involving mass or energy 
transport by convection or diffusion. Mathematical representation 
of a distributed-parameter system involves partial differential 
equations (PDEs) [13].  

The fourth of the methodologies, the hybrid modeling, separates 
the model into a white/transparent box part, the first-principles 
equations model, and a black-box part represented by a data-fitted, 
typically, nonlinear data model, e.g. neuro-fuzzy model. 

1.	�Introduction Table 1.  
Grey-box modeling methodologies 

 Constrained black-box  
and semi-physical modeling Analytical modeling Hybrid modeling 

Unknown-to-known parameters 
ratio high low moderate 

Structure complexity low high moderate 
First-principle contents no yes yes/no 

Application area model-based control, fault 
detection, adaptative filtering 

system understanding, 
diagnostics, training simulators 

fault detection, process 
tracking 

System identification standard LS or PEM methods multi-criteria and general 
optimization techniques 

second-order methods like 
the Levenberg-Marquardt 

method 
A priori known model structure not necessary yes always yes/no 

Artificial intelligence model 
structures, e.g. neural nets, fuzzy 

sets, evolutionary computing 
yes no yes 

Partial differential equations  
(PDEs)models no yes no 

On-line estimation yes no yes 

Dynamic nonlinearities yes yes yes 
Static nonlinearities yes yes yes 

 
 
2.1. Constrained black box and semi-physical 
modeling 
 
 

Black-box models are formulated based on experimental data 
sets or field operation data sets, and require no a priori knowledge 
(such as fluid dynamics, thermal dynamics or chemical reactions). 
They are widely used in industry [15]. Black-box models may 
include static and dynamic, linear and nonlinear regression 
models. These models are families of basic ARX (AutoRegressive 
model with eXogenenous input) or NARX (non-linear ARX) 
model structures [16]. For the ARX/NARX structure and other 
related structures, i.e. OE/NOE, ARMAX/NARMAX, BJ/NBJ, 
the previous outputs return into the model formulating a general 
linear/nonlinear regressor. Recurrent artificial neural network 
models are mostly used as nonlinear regressors. 

A purely black-box model is not reliable when the process or 
system exhibits significant nonlinear behavior moving into new 
operating conditions which may result from configuration 
changes, new operating practices, or external factors [17,18]. For 
cases where first-principle modeling is not feasible, it can be 
possible to make use of physical insight to transform the input and 
output variables to new variables which are used as regressor to 
develop a black-box model. If the nonlinear static input/output 
characteristics are known, it is possible to use the convention of 
Hammerstein models, Wiener models or general feedback block 
oriented models (Fig. 2). In [19], the semi-physical grey-box 
modeling approach has been utilized to distinguish between linear 
dynamic blocks and static non-linearities in the servo-hydraulic 
system. The proposed approach has been applied to the hydraulic 
actuators of a flight simulator motion system, using a well-
conditioned experimental setup, with the double-concentric 

hydraulic actuator placed in a test rig, provided with a three-stage 
servo-valve and various transducers [19]. 
 

 
 
Fig. 2. Block scheme representations of three basic structures of 
nonlinear grey-box model [18]; Hammerstein model (a); Wiener 
model (b); general model (c) 
 

Based on the results of this real-life application of the non-
linear identification and validation approach, it can be concluded 
that the proposed method properly utilizes the a-priori knowledge 
of the model's physical structure to identify the non-linear 
dynamics of the system. Starting with the non-linear dynamic 
models of the subsystems of the hydraulic servo-system, the aim 
of the experimental identification and validation has been to 
identify the unknown model parameters. Therefore, not only the 
relevant dynamics, but also the dominant non-linearities, of the 
hydraulic servo-system have been explicitly taken into account. 

2.	�Taxonomy of models
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1.	�Introduction

2.2. Analytical modeling 
 

In cases where a fundamental insight into the mechanisms that 
underlie the behavior of a process exists, relevant balance 
equations can be formulated as a set of first order equations [17]. 
In general, the initial model structure formulated based on a 
physical insight must be refined to match the experimental data. 
The activity of developing an analytical model consists of basic 
modeling, experiments, estimation, expanded modeling and 
model validation. The process may cover the following steps [20]:  
 A phenomenological description in the form of a verbal, 

graphical, or other mental description involving the modeling 
object and experiment conditions. 

 Variables and causality enable the description to be translated 
into a system of causal dependencies between defined variables, 
for instance in the form of a block diagram. This may introduce 
internal variables that are not measured, or random 
disturbances. The step serves to eliminate a number of 
otherwise mathematically possible relations between the 
object’s input and output variables.  

 Mathematical modeling specifies known relations between 
variables, including parameterization, or chooses structures for 
unknown relations, including disturbances.  If it is not known 
how many, or what, relations are needed, instead several 
hypothetical model structures with increasing detail need to be 
created. 

 Calibration allows the simplest models that are not falsified by 
experimental data to be found. The step involves fitting to the 
data and testing significance. The results allow uncertainty and 
credibility to be evaluated, and usually cause a return to the 
previous step. 

 Validation enables the model to be confronted with independent 
data. If the calibrated model is more complex than the purpose 
required, then it must be reduced.  

 
Lumped parameter systems are most often considered in this 

approach. Nevertheless, spatially distributed phenomena are 
important in many chemical, and energy transfer related 
processes, and including for instance any process involving mass 
or energy transport by convection, radiation or diffusion. For such 
processes, a priori knowledge will result in a model structure 
involving partial differential equations (PDE) [17]. A common 
approach for calibrating and validating PDE models is to perform 
using spatial discretization to obtain an ordinary differential 
equations (ODE) model [21,22]. Unfortunately, if the physically 
derived PDE model structure is completely replaced by an 
approximate ODE model, then important information about the 
underlying process has been discarded [17]. On the other hand, if 
the ODE model is used only for calibration and validation, then 
the model error introduced by spatial discretization can easily lead 
to falsely validated PDE models [17]. As a simple example of the 
latter, it was shown in [21] how finite difference discretization 
introduces artificial diffusion effects in the ODE model, artifacts 
that cannot be distinguished from the physical diffusion modeled 
in the PDE structure. A robust identification scheme was 
proposed in [22] for distributed parameter systems based on 
integrating the spatial discretization with calibration and 
validation of the ODE model. This integration is made feasible by 
estimating the model error imposed by discretization and 

formulating simple hypothesis tests relating the parameters of the 
discretization mesh to the estimated error. The proposed method 
ensures that there is no interference between model reduction 
errors and model-data discrepancies. In general, PDE models are 
not suitable for direct real-time applications without spatial 
discretization. There are two-dimensional approaches available 
[23] that, it is claimed to produce real-time PDE models suitable 
for use in operation training and for control testing design. 
However, there is the inevitable loss of detail (both internal detail 
and input output relationships) and a requirement for experimental 
data in order to identify unknown parameters [23]. 
 
 
2.3. Hybrid modeling 
 

Thanks to using a hybrid model, the predictions tend towards 
results obtainable from a first-principle model when new 
operating conditions are encountered and additionally, the data-
driven models are used when in already encountered and known 
operating conditions [18]. There are two major methodologies: 
the “serial approach” and the “parallel approach”. 

 
 

 
 
Fig 3. Block scheme representations of three basic structures of 
nonlinear grey-box model [19]; Hammerstein model (a); Wiener 
model (b); general model (c) 
 
 

The serial approach uses a data-based model to construct 
missing inputs, or in the serial hybrid modeling approach, 
nonlinear system identification methods are used to model 
parameters in the first-principle models, and the first-principle 
model is used to model the system [18]. These parameters may be 
unknown, unmeasurable, change with time, or otherwise uncertain 
[18]. In the parallel hybrid modeling approach, a nonlinear system 
identification method is used to predict the residuals not explained 
by the first principle model. When in operation, the predicted 
residuals are added to the first principle model output, resulting in 
a total prediction that is much closer to the actual system. 

The paper [18] presents a physical model and a parallel hybrid 
modeling architecture, both of which are capable of modeling a 
heat exchanger. The physical modeling did not perform well at all 
steady state conditions, therefore the neural network standard 
architectures (multi-layer perceptron) were used to improve 
model performance. This allows the hybrid models to revert back 
to the first-principle models when new conditions are encountered 
[18]. For comparison purposes, the authors will develop the 
hybrid serial model and its performance will be compared to the 
parallel hybrid model [18].  

A novel cost-effective evolutionary hybrid model 
identification technique was presented in [24]. It was proposed to 
utilize the physical law based white-box dominated global 

structure, with local black-boxes to include immeasurable and 
local nonlinearities of a system. The method offers an accurate, 
uncluttered and robust model with insightful representation of 
nonlinearities, which cannot be matched by conventional means 
[24]. It was shown that the hybrid model identification may fail 
by conventional gradient guided model fitting methods, but can be 
easily established through global optimization techniques by 
evolutionary computing [24]. The evolution can start from 
empirical models, making the best use of existing knowledge on a 
practical system [24]. In addition, the evolutionary technique is 
capable of accommodating multiple objectives to examine 
different trade-offs between the model complexity and fitting 
accuracy before final determination of a suitable hybrid model 
structure with optimized parameters. Two practical applications 
have shown the good feasibility and accuracy of the hybrid 
models [24]. 

An application example of the serial approach is the model 
development process of an experimental batch distillation column 
[25]. The moderately complex model describes the product 
quality and production over time including the start-up phase of 
the distillation column. The model structure is based on a simple 
physical framework, which is augmented with fuzzy logic. This 
provides a way to use prior knowledge about the dynamics, which 
have a general validity, while additional information about the 
specific column behavior is derived from measured process data 
[25]. The model framework is applicable for a wide range of 
columns operating under a certain control policy. The model 
framework for the particular column under study makes a priori 
assumptions about the specific behavior superfluous. In addition, 
a detailed description of the internal dynamics is not required, 
which reduces modeling effort. Three different hybrid model 
structures are compared; the model that uses the available sources 
of information most effectively can be used to simulate 
production including part of the start-up by applying constant 
quality control [25]. Another interesting example of the hybrid 
parallel approach is composition of a first-principle model derived 
from dynamic mass, energy and momentum balances used in the 
Globally Linearizing Control (GLC) strategy capable of using 
nonlinear process models directly [26]. When the process is not 
perfectly known, the unknown parts of the first-principle model 
should be represented by black-box models, e.g. by neural 
networks. In this paper, it is shown that the first principles part of 
the model determines the dominant structure of the controller, 
while the black-box elements of the hybrid model are used as 
state and/or disturbance estimators. For the identification of the 
neural network elements of the hybrid model a sensitivity 
approach based algorithm has been developed [26]. 
 
 

3. Formulation of FPDD model 
 

This section introduces FPDD model referring to previous 
section where general classification overview was given. 
Process of formulation of a first-principle data-driven model 
consists of three phases, namely (i) formulation of mathematical 

representation of first-principle laws, (ii) model adjustment and 
calibration process, and (iii) model evaluation phase.  
 
3.1. Definition of an FPDD model 
 

To derive first-principle mathematical representation of the 
technical system, three important aspects have to be considered; 
these are (i) system isolation, (ii) inputs-outputs selection and (iii) 
model economy. System isolation allows various types of 
interactions existing between the system and its surrounding 
environment to be discerned. System isolation enables only the 
most relevant and important interactions to be selected and 
represented in the form of inputs and outputs. Using principles of 
isolation and selection, a model is always simplified in 
accordance to the purpose of modeling. The number of inputs and 
outputs of a model is limited due to economical-type constraints 
(model economy). The principle of economy implies the 
simplicity of a structure and that a minimal number of parameters 
and state variables are considered.  

A FP model requires an efficient modeling and simulation 
language to perform simulation. This kind of language differs 
from general-purpose programming language like FORTRAN or 
C in a functionality efficiently supporting of continuous and/or 
discrete event simulations. Nevertheless, a dedicated software 
environment is required to execute simulation and therefore, 
modeling and simulation languages are frequently integrated with 
simulation environments, e.g. Matlab/Simulink [27], or developed 
independently from the simulation environment, e.g. Modelica. In 
this respect, Modelica is a language that enables creation of open 
code, which can be executed in numerous third party simulation 
environments like CATIA Systems, Dymola, LMS Imagine.Lab 
AMESim, JModelica, MapleSim, MathModelica, OpenModelica, 
SCICOS, SimulationX. 
 
 
3.2. Model adjustment and calibration 
 

The most important phase when formulating the model is its 
calibration, which consists of (i) selection of representative data 
sets, including a sufficiently broad operating range that the model 
proved could work correctly using a data fit measure and (ii) 
adjustment of model parameters to fit a model response to data. 
First-principle models are frequently adjusted by a trial-and-error 
approach manipulating the values of parameters as a result of 
performed sensitivity analysis with the model, i.e. a series of 
model responses corresponding to a combination of values of 
selected model parameters. Nevertheless, such an approach can 
lead to non-optimal and non-repeatable results due to a lack of 
any systematic approach in making changes to the parameter 
values. In order to avoid the deficiencies of the trial-and-error 
approach, a formalized mathematical method using optimization 
techniques to minimize the error criterion, and find optimal values 
of tunable model parameters, is proposed in this respect. It is 
believed that the smaller the number of tunable parameters 
compared to the number of known parameters, the more accurate 
the model and the faster the convergence of the optimization 
algorithm used for model adjustment. 

2.2.	�Analytical modeling

2.3.	�Hybrid modeling
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In general, the initial model structure formulated based on a 
physical insight must be refined to match the experimental data. 
The activity of developing an analytical model consists of basic 
modeling, experiments, estimation, expanded modeling and 
model validation. The process may cover the following steps [20]:  
 A phenomenological description in the form of a verbal, 

graphical, or other mental description involving the modeling 
object and experiment conditions. 

 Variables and causality enable the description to be translated 
into a system of causal dependencies between defined variables, 
for instance in the form of a block diagram. This may introduce 
internal variables that are not measured, or random 
disturbances. The step serves to eliminate a number of 
otherwise mathematically possible relations between the 
object’s input and output variables.  

 Mathematical modeling specifies known relations between 
variables, including parameterization, or chooses structures for 
unknown relations, including disturbances.  If it is not known 
how many, or what, relations are needed, instead several 
hypothetical model structures with increasing detail need to be 
created. 

 Calibration allows the simplest models that are not falsified by 
experimental data to be found. The step involves fitting to the 
data and testing significance. The results allow uncertainty and 
credibility to be evaluated, and usually cause a return to the 
previous step. 

 Validation enables the model to be confronted with independent 
data. If the calibrated model is more complex than the purpose 
required, then it must be reduced.  

 
Lumped parameter systems are most often considered in this 

approach. Nevertheless, spatially distributed phenomena are 
important in many chemical, and energy transfer related 
processes, and including for instance any process involving mass 
or energy transport by convection, radiation or diffusion. For such 
processes, a priori knowledge will result in a model structure 
involving partial differential equations (PDE) [17]. A common 
approach for calibrating and validating PDE models is to perform 
using spatial discretization to obtain an ordinary differential 
equations (ODE) model [21,22]. Unfortunately, if the physically 
derived PDE model structure is completely replaced by an 
approximate ODE model, then important information about the 
underlying process has been discarded [17]. On the other hand, if 
the ODE model is used only for calibration and validation, then 
the model error introduced by spatial discretization can easily lead 
to falsely validated PDE models [17]. As a simple example of the 
latter, it was shown in [21] how finite difference discretization 
introduces artificial diffusion effects in the ODE model, artifacts 
that cannot be distinguished from the physical diffusion modeled 
in the PDE structure. A robust identification scheme was 
proposed in [22] for distributed parameter systems based on 
integrating the spatial discretization with calibration and 
validation of the ODE model. This integration is made feasible by 
estimating the model error imposed by discretization and 

formulating simple hypothesis tests relating the parameters of the 
discretization mesh to the estimated error. The proposed method 
ensures that there is no interference between model reduction 
errors and model-data discrepancies. In general, PDE models are 
not suitable for direct real-time applications without spatial 
discretization. There are two-dimensional approaches available 
[23] that, it is claimed to produce real-time PDE models suitable 
for use in operation training and for control testing design. 
However, there is the inevitable loss of detail (both internal detail 
and input output relationships) and a requirement for experimental 
data in order to identify unknown parameters [23]. 
 
 
2.3. Hybrid modeling 
 

Thanks to using a hybrid model, the predictions tend towards 
results obtainable from a first-principle model when new 
operating conditions are encountered and additionally, the data-
driven models are used when in already encountered and known 
operating conditions [18]. There are two major methodologies: 
the “serial approach” and the “parallel approach”. 

 
 

 
 
Fig 3. Block scheme representations of three basic structures of 
nonlinear grey-box model [19]; Hammerstein model (a); Wiener 
model (b); general model (c) 
 
 

The serial approach uses a data-based model to construct 
missing inputs, or in the serial hybrid modeling approach, 
nonlinear system identification methods are used to model 
parameters in the first-principle models, and the first-principle 
model is used to model the system [18]. These parameters may be 
unknown, unmeasurable, change with time, or otherwise uncertain 
[18]. In the parallel hybrid modeling approach, a nonlinear system 
identification method is used to predict the residuals not explained 
by the first principle model. When in operation, the predicted 
residuals are added to the first principle model output, resulting in 
a total prediction that is much closer to the actual system. 

The paper [18] presents a physical model and a parallel hybrid 
modeling architecture, both of which are capable of modeling a 
heat exchanger. The physical modeling did not perform well at all 
steady state conditions, therefore the neural network standard 
architectures (multi-layer perceptron) were used to improve 
model performance. This allows the hybrid models to revert back 
to the first-principle models when new conditions are encountered 
[18]. For comparison purposes, the authors will develop the 
hybrid serial model and its performance will be compared to the 
parallel hybrid model [18].  

A novel cost-effective evolutionary hybrid model 
identification technique was presented in [24]. It was proposed to 
utilize the physical law based white-box dominated global 

structure, with local black-boxes to include immeasurable and 
local nonlinearities of a system. The method offers an accurate, 
uncluttered and robust model with insightful representation of 
nonlinearities, which cannot be matched by conventional means 
[24]. It was shown that the hybrid model identification may fail 
by conventional gradient guided model fitting methods, but can be 
easily established through global optimization techniques by 
evolutionary computing [24]. The evolution can start from 
empirical models, making the best use of existing knowledge on a 
practical system [24]. In addition, the evolutionary technique is 
capable of accommodating multiple objectives to examine 
different trade-offs between the model complexity and fitting 
accuracy before final determination of a suitable hybrid model 
structure with optimized parameters. Two practical applications 
have shown the good feasibility and accuracy of the hybrid 
models [24]. 

An application example of the serial approach is the model 
development process of an experimental batch distillation column 
[25]. The moderately complex model describes the product 
quality and production over time including the start-up phase of 
the distillation column. The model structure is based on a simple 
physical framework, which is augmented with fuzzy logic. This 
provides a way to use prior knowledge about the dynamics, which 
have a general validity, while additional information about the 
specific column behavior is derived from measured process data 
[25]. The model framework is applicable for a wide range of 
columns operating under a certain control policy. The model 
framework for the particular column under study makes a priori 
assumptions about the specific behavior superfluous. In addition, 
a detailed description of the internal dynamics is not required, 
which reduces modeling effort. Three different hybrid model 
structures are compared; the model that uses the available sources 
of information most effectively can be used to simulate 
production including part of the start-up by applying constant 
quality control [25]. Another interesting example of the hybrid 
parallel approach is composition of a first-principle model derived 
from dynamic mass, energy and momentum balances used in the 
Globally Linearizing Control (GLC) strategy capable of using 
nonlinear process models directly [26]. When the process is not 
perfectly known, the unknown parts of the first-principle model 
should be represented by black-box models, e.g. by neural 
networks. In this paper, it is shown that the first principles part of 
the model determines the dominant structure of the controller, 
while the black-box elements of the hybrid model are used as 
state and/or disturbance estimators. For the identification of the 
neural network elements of the hybrid model a sensitivity 
approach based algorithm has been developed [26]. 
 
 

3. Formulation of FPDD model 
 

This section introduces FPDD model referring to previous 
section where general classification overview was given. 
Process of formulation of a first-principle data-driven model 
consists of three phases, namely (i) formulation of mathematical 

representation of first-principle laws, (ii) model adjustment and 
calibration process, and (iii) model evaluation phase.  
 
3.1. Definition of an FPDD model 
 

To derive first-principle mathematical representation of the 
technical system, three important aspects have to be considered; 
these are (i) system isolation, (ii) inputs-outputs selection and (iii) 
model economy. System isolation allows various types of 
interactions existing between the system and its surrounding 
environment to be discerned. System isolation enables only the 
most relevant and important interactions to be selected and 
represented in the form of inputs and outputs. Using principles of 
isolation and selection, a model is always simplified in 
accordance to the purpose of modeling. The number of inputs and 
outputs of a model is limited due to economical-type constraints 
(model economy). The principle of economy implies the 
simplicity of a structure and that a minimal number of parameters 
and state variables are considered.  

A FP model requires an efficient modeling and simulation 
language to perform simulation. This kind of language differs 
from general-purpose programming language like FORTRAN or 
C in a functionality efficiently supporting of continuous and/or 
discrete event simulations. Nevertheless, a dedicated software 
environment is required to execute simulation and therefore, 
modeling and simulation languages are frequently integrated with 
simulation environments, e.g. Matlab/Simulink [27], or developed 
independently from the simulation environment, e.g. Modelica. In 
this respect, Modelica is a language that enables creation of open 
code, which can be executed in numerous third party simulation 
environments like CATIA Systems, Dymola, LMS Imagine.Lab 
AMESim, JModelica, MapleSim, MathModelica, OpenModelica, 
SCICOS, SimulationX. 
 
 
3.2. Model adjustment and calibration 
 

The most important phase when formulating the model is its 
calibration, which consists of (i) selection of representative data 
sets, including a sufficiently broad operating range that the model 
proved could work correctly using a data fit measure and (ii) 
adjustment of model parameters to fit a model response to data. 
First-principle models are frequently adjusted by a trial-and-error 
approach manipulating the values of parameters as a result of 
performed sensitivity analysis with the model, i.e. a series of 
model responses corresponding to a combination of values of 
selected model parameters. Nevertheless, such an approach can 
lead to non-optimal and non-repeatable results due to a lack of 
any systematic approach in making changes to the parameter 
values. In order to avoid the deficiencies of the trial-and-error 
approach, a formalized mathematical method using optimization 
techniques to minimize the error criterion, and find optimal values 
of tunable model parameters, is proposed in this respect. It is 
believed that the smaller the number of tunable parameters 
compared to the number of known parameters, the more accurate 
the model and the faster the convergence of the optimization 
algorithm used for model adjustment. 

3.	�Formulation of FPDD model

3.1.	�Definition of an FPDD model

3.2.	�Model adjustment and 
calibration
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The procedure for adjusting a model consists of two in-a-loop 
phases: (i) simulation of a model by solving differential equations 
numerically, and (ii) numerical minimization in the parameter 
space with respect to an error-related criterion function. The 
function describing the error has to be a positive and decreasing 
function of the differences between reference and modeled 
outputs. A model of a technical system to be calibrated is 
typically represented as a set of nonlinear state-space equations 
formulated in the continuous-time domain as  
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where vector f(.) is a nonlinear, time-varying function of the state 
vector x(t) and the control vector u(t), while vector h(.) is a 
nonlinear measurement function; w(t) and v(t) are sequences of 
independent random variables and  denotes a vector of unknown 
parameters. In nonlinear systems, the state vectors and the 
measurements vectors are not Gaussian distributed.  
 

The sum of squared errors is used as an error criterion. This 
problem is known in numerical analysis as “the nonlinear least-
squares problem” [27]. The objective of the estimation is to 
minimize the VN( ) error function by means of an iterative 
numerical technique. The error function VN( ) has the form  
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Three methods of minimizing the error function [27] are 

feasible as presented in Table 6. These are (i) direct search, (ii) 
first-order and (iii) second-order methods.  

Direct search methods use only the value of the function to 
find the minimum. The first-order method uses the information 
provided by the first derivative (gradient) of the error function, 
while the second-order method uses both, information regarding 
the first and the second order derivatives (gradient and Hessian 
form) of the error function. First- and second-order methods 
update the estimates of the error function iteratively according to 
general scheme 
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where )(ˆ k  denotes the k-th iteration point in the search, (k) is a 
search direction based on the information about V( ) acquired at 
previous iterations, and the sequence of positive scalars i  
determine velocity in which the value of V( ) is decreased. In 
general, function (k) has a form 
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Table 6.  
Available methods to minimize the criterion function 

Method Algorithm Description 

Direct search 
methods 

Simplex The simplex algorithm is most useful for simple problems and might be faster than 
function minimization for models that contain discontinuities. 

Evolutionary 
algorithms 

Genetic algorithm (GA) for instance, is a technique used in computing to find exact or 
approximate solutions of optimization and search problems. 

First-order 
(gradient) 

Gradient 
(steepest-descent) 

The algorithm uses only the information about the gradient or the approximate gradient. 
The weakness of the method is that the algorithm may need multiple iterations before 

converging towards a local minimum. 

Second-order 
(gradient and 

Hessian) 

Newton-Raphson 

Newton's method converges much faster towards a local minimum than gradient descent 
using full form of the Hessian. A number of quasi-Newton methods, where an 

approximation for the Hessian is used instead, are known. The Hessian is updated by 
analyzing successive gradient vectors instead. 

Gauss-Newton The Gauss–Newton (GN) method is derived by ignoring the second-order derivative terms 
(the second term in this expression) approximating the Hessian with the form given by Eq. 6. 

Damped Gauss-
Newton (Adaptive 

Gauss-Newton) 
If the term 

)1(i
N  in Eq. (7) is not equal to unity then the equation describes the so-called 

damped Gauss-Newton algorithm. 

Levenberg-Marquardt 

The Levenberg-Marquardt algorithm (LMA) interpolates between the Gauss–Newton 
algorithm (GNA) and the method of gradient descent. The LMA is more robust than the 

GNA, which means that in many cases it finds a solution even if it starts very far from the 
minimum. On the other hand, when well-behaved functions and reasonable starting 

parameters are considered, the LMA tends to be slower than the GNA. 

The first and second derivatives are obtained as follows 
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where ),(t denotes the d-by-d Hessian matrix of  ),(t , d = 
dim( ), cf. [27]. 
 
A general family of iterative search routines is described by the 
scheme 
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where )(k

NR  is a d-by-d matrix, which modifies the search 
direction (changes the search direction according to user 
preferences), while the step size )1(k

N , is chosen so that satisfied 
in an inequality 
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It is often necessary to use variable step length to improve the 
convergence of the algorithm; a sequence of scalars )1(k

N
 is used 

to control the step length. If the term 1)1(k
N

, equation (7) 

describes the so-called damped Gauss-Newton algorithm. 
 

The form of 
)(i

NR enables different optimization schemes to be 
classified as [27]: 
 
(i) Gradient or steepest-descent algorithm  
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(ii) Newton-Raphson algorithm 
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(iii) Gauss-Newton algorithm 
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NH  is the simplified form of the second derivative of 
error function. 
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The simplification is feasible under assumption that the prediction 
errors, in the vicinity of the minimum, are independent of , i.e. 

)(),( 00 tet . 
 
(iv) Levenberg-Marquardt algorithm (a subclass of regularization 
techniques) 
 

N

t

k
N

Tk
N

k
N tt

N
R

1

)()()( )ˆ,()ˆ,(1)(
 

(13) 

 
where  is a positive scalar used to control the convergence in the 
iterative scheme rather than the step size parameter (the method 
reduces to the Gauss-Newton method when =0). 
 
 
3.3. Model evaluation 
 

Validation enables to confront the model with independent 
data sets which were not used during the calibration phase.  
 
 

4. Summary 
 

The paper proposes and demonstrates a first-principle data-
driven approach towards modeling of technical systems. The 
FPDD model offers physical insight and sufficient numerical 
performance to be applicable in understanding underlying 
physical phenomena, designing control systems, diagnosing and 
optimizing processes. FPDD models can be used in many areas 
where physical understanding is critical, e.g. design of new 
products or early warning diagnostics of large industrial 
installations. The model is represented by nonlinear state-space 
equations having geometrical and physical parameters deduced 
from available documentation, and adjustable phenomenological 
parameters (i.e. friction, leakage coefficients) that are estimated 
from measurement data. 

This paper discusses three modeling approaches intended for 
technical systems, namely (i) constrained black-box together with 
semi-physical modeling, (ii) analytical modeling, and (iii) hybrid 
modeling. FPDD model was proposed by contrast to the presented 
taxonomy. A process of formulation of a FPDD model, 
adjustment and calibration is discussed as well.  

The second part of the paper is focused on estimation of 
FPDD model parameters.  
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The procedure for adjusting a model consists of two in-a-loop 
phases: (i) simulation of a model by solving differential equations 
numerically, and (ii) numerical minimization in the parameter 
space with respect to an error-related criterion function. The 
function describing the error has to be a positive and decreasing 
function of the differences between reference and modeled 
outputs. A model of a technical system to be calibrated is 
typically represented as a set of nonlinear state-space equations 
formulated in the continuous-time domain as  
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where vector f(.) is a nonlinear, time-varying function of the state 
vector x(t) and the control vector u(t), while vector h(.) is a 
nonlinear measurement function; w(t) and v(t) are sequences of 
independent random variables and  denotes a vector of unknown 
parameters. In nonlinear systems, the state vectors and the 
measurements vectors are not Gaussian distributed.  
 

The sum of squared errors is used as an error criterion. This 
problem is known in numerical analysis as “the nonlinear least-
squares problem” [27]. The objective of the estimation is to 
minimize the VN( ) error function by means of an iterative 
numerical technique. The error function VN( ) has the form  
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Three methods of minimizing the error function [27] are 

feasible as presented in Table 6. These are (i) direct search, (ii) 
first-order and (iii) second-order methods.  

Direct search methods use only the value of the function to 
find the minimum. The first-order method uses the information 
provided by the first derivative (gradient) of the error function, 
while the second-order method uses both, information regarding 
the first and the second order derivatives (gradient and Hessian 
form) of the error function. First- and second-order methods 
update the estimates of the error function iteratively according to 
general scheme 
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determine velocity in which the value of V( ) is decreased. In 
general, function (k) has a form 
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Table 6.  
Available methods to minimize the criterion function 

Method Algorithm Description 

Direct search 
methods 

Simplex The simplex algorithm is most useful for simple problems and might be faster than 
function minimization for models that contain discontinuities. 

Evolutionary 
algorithms 

Genetic algorithm (GA) for instance, is a technique used in computing to find exact or 
approximate solutions of optimization and search problems. 

First-order 
(gradient) 

Gradient 
(steepest-descent) 

The algorithm uses only the information about the gradient or the approximate gradient. 
The weakness of the method is that the algorithm may need multiple iterations before 

converging towards a local minimum. 

Second-order 
(gradient and 

Hessian) 

Newton-Raphson 

Newton's method converges much faster towards a local minimum than gradient descent 
using full form of the Hessian. A number of quasi-Newton methods, where an 

approximation for the Hessian is used instead, are known. The Hessian is updated by 
analyzing successive gradient vectors instead. 

Gauss-Newton The Gauss–Newton (GN) method is derived by ignoring the second-order derivative terms 
(the second term in this expression) approximating the Hessian with the form given by Eq. 6. 

Damped Gauss-
Newton (Adaptive 
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If the term 
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N  in Eq. (7) is not equal to unity then the equation describes the so-called 

damped Gauss-Newton algorithm. 

Levenberg-Marquardt 

The Levenberg-Marquardt algorithm (LMA) interpolates between the Gauss–Newton 
algorithm (GNA) and the method of gradient descent. The LMA is more robust than the 

GNA, which means that in many cases it finds a solution even if it starts very far from the 
minimum. On the other hand, when well-behaved functions and reasonable starting 

parameters are considered, the LMA tends to be slower than the GNA. 
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where ),(t denotes the d-by-d Hessian matrix of  ),(t , d = 
dim( ), cf. [27]. 
 
A general family of iterative search routines is described by the 
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where  is a positive scalar used to control the convergence in the 
iterative scheme rather than the step size parameter (the method 
reduces to the Gauss-Newton method when =0). 
 
 
3.3. Model evaluation 
 

Validation enables to confront the model with independent 
data sets which were not used during the calibration phase.  
 
 

4. Summary 
 

The paper proposes and demonstrates a first-principle data-
driven approach towards modeling of technical systems. The 
FPDD model offers physical insight and sufficient numerical 
performance to be applicable in understanding underlying 
physical phenomena, designing control systems, diagnosing and 
optimizing processes. FPDD models can be used in many areas 
where physical understanding is critical, e.g. design of new 
products or early warning diagnostics of large industrial 
installations. The model is represented by nonlinear state-space 
equations having geometrical and physical parameters deduced 
from available documentation, and adjustable phenomenological 
parameters (i.e. friction, leakage coefficients) that are estimated 
from measurement data. 

This paper discusses three modeling approaches intended for 
technical systems, namely (i) constrained black-box together with 
semi-physical modeling, (ii) analytical modeling, and (iii) hybrid 
modeling. FPDD model was proposed by contrast to the presented 
taxonomy. A process of formulation of a FPDD model, 
adjustment and calibration is discussed as well.  

The second part of the paper is focused on estimation of 
FPDD model parameters.  
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