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Analysis and modelling

AbstrAct

Purpose: The paper consists of two parts. The first part presents and discusses a process of formulation and 
identification of First-Principle Data-Driven (FPDD) models, while the second part demonstrates numerical 
examples of identification of FPDD models.
Design/methodology/approach: First-Principle (FP) model is formulated using a system of continuous ordinary 
differential equations capturing usually nonlinear relations among variables of the model. The considering model applies 
three categories of parameters: geometrical, physical and phenomenological. Geometrical and physical parameters are 
deduced from construction or operational documentation. The phenomenological parameters are the adjustable ones, 
which are estimated or adjusted based on their roughly known values, e.g. friction/damping coefficients.
Findings: A few phenomenological parameters were successfully estimated from numerically generated data. The error 
between the true and estimated value of the parameter occurred, however its magnitude is low at level below 2%.
Research limitations/implications: Adjusting a model to data is, in most cases, a non-convex optimization 
problem and the criterion function may have several local minima. This is a case when multiple parameters are 
simultaneously estimated.
Practical implications: FPDD models are an excellent tool for understanding, optimizing, designing, and 
diagnosing technical systems since they are updatable using operational measurements. This opens application 
area, for example, for model-based design and early warning diagnostics.
Originality/value: First-Principle (FP) models are frequently adjusted by trial-and-error, which can lead to 
non-optimal results. In order to avoid deficiencies of the trial-and-error approach, a formalized mathematical 
method using optimization techniques to minimize the error criterion, and find optimal values of tunable model 
parameters, was proposed and demonstrated in this work.
Keywords: First-Principle model, Data Driven model, Grey-box, Servo-hydraulic system

Reference to this paper should be given in the following way: 
P. Czop, D. Sławik, G. Wszołek, Demonstration of First-Principle Data-Driven models using numerical case 
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1. Basic demonstration  
 

This section presents an example of parameter adjustment of 
FP (First-Principle) model based on a simulated data from a 
continuous-time state-space model. This model may refer to 
mechanical second order system, i.e. harmonic resonator with 
linear damping. The input u(t) to the system is the force and the 
measured output y(t) is the displacement. The system is described 
by the following differential equation 
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This equation can be transferred into state-space representation  
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where particular matrices A, B, C, and D are as follows 
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Fig. 1. A system model implemented in Simulink as the state 
space equations 
 

The model was implemented in Simulink and run to generate 
input-output data sets which are used in Sections 1.1 and 1.2. 
 
 
1.1. Estimation with use of System 
Identification Toolbox 
 

System Identification Toolbox is designed to work in Matlab 
environment. It provides a library of system identification 
routines for black-box and grey-box models. 

In the case A, m and k parameters are the fix parameters 
(known a priori), while parameter d is the free parameter 
(unknown) estimating from available input-output data (Table 1). 

The error is calculated between the value of the system 
parameters and the estimated free parameters 
 
 
Table 1.  
Free and known system parameters (case A) 

Parameter m d k 
System parameters 1 0.1 3947.8 

Free parameters 
(unknown)  d k 

Fix parameters 
(known) m   

Estimated free 
parameters  0.099987 3949.9 

Error  0.0013% 0.0532% 
 
 

In the case B, m parameter is the fix parameter, while 
parameters d and k are the free parameters estimating from 
available input-output data (Table 2). The error is calculated 
between the value of the system parameters, and the estimated 
free parameter. 
 
 
Table 2.  
Free and known system parameters (case B) 

Parameter m d k 

System parameters 1 0.1 3947.8 
Free parameters 

(unknown)  d  

Fix parameters 
(known) m  k 

Estimated free 
parameters  0.10323  

Error  2%  
 
 
1.2. Estimation with use of Simulink® 
Parameter Estimation tool 
 

Simulink® Parameter Estimation™ uses optimization 
techniques to estimates the values of parameters and (optionally) 
initial conditions of states such that a user-selected cost function 
is minimized. The cost function typically calculates a least-
squares error between the empirical and model input-output data. 
The Control and Estimation Tools Manager, which is a graphical 
user interface (GUI) for performing parameter estimation, stores 
and organizes all data from a given Simulink model inside a 
project (Fig. 3a). A system identification project was created 
using Control and Estimation Tool Manager (Fig. 2). 

In the case C, as the free parameters were selected damping d, 
and stiffness k, while mass m was defined as the fix parameter 
(Table 3). In the case D, as the free parameter was selected 
stiffness k, while mass m and damping d were defined as the fix 
parameters (Table 4). The boundary conditions were imposed on 
the estimating parameters values (Fig. 2). 
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initial conditions of states such that a user-selected cost function 
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squares error between the empirical and model input-output data. 
The Control and Estimation Tools Manager, which is a graphical 
user interface (GUI) for performing parameter estimation, stores 
and organizes all data from a given Simulink model inside a 
project (Fig. 3a). A system identification project was created 
using Control and Estimation Tool Manager (Fig. 2). 

In the case C, as the free parameters were selected damping d, 
and stiffness k, while mass m was defined as the fix parameter 
(Table 3). In the case D, as the free parameter was selected 
stiffness k, while mass m and damping d were defined as the fix 
parameters (Table 4). The boundary conditions were imposed on 
the estimating parameters values (Fig. 2). 

1.  basic demonstration

1.1.  Estimation with use of system 
Identification toolbox

1.2.  Estimation with use of simulink® 
Parameter Estimation tool
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Fig. 2. Control and Estimation Tools Manager 
 
Table 3.  
Free and known system parameters (case C) 

Parameter m d k 

System parameters 1 0.1 3947.8 
Free parameters 

(unknown)  d k 

Fix parameters 
(known) m   

Estimated free 
parameters  0.099987 3947.8 

Error  0.0014% 0% 
 
 
The iterative convergence process was run for a couple of 

seconds (below 1 min) to optimize the error objective function. 
Simulation and optimization settings used the parameter 
adjustment process are presented in Table 5+6. The Newton-
Gauss method, lsqnonlin(.) routine implemented in the 
Optimization Toolbox of Matlab, was used to minimize the 
function describing the error in the model outputs. 

 
Table 4.  
Free and known system parameters (case D) 

Parameter m d k 

System parameters 1 0.1 3947.8 
Free parameters 

(unknown)  d  

Fix parameters 
(known) m  k 

Estimated free 
parameters  0.099987  

Error  0.0013%  
 
 

The error was computed comparing reference system output 
(displacement) with predicted model output after each iteration. 

The trend of parameters variability during convergence 
(optimization) process was shown in Fig. 4. The comparison of 
the proposed system identification tools is in Table 7. 

The criterion “Simulink support” in the Table 7 enables 
system identification using the equations directly implemented in 
Simulink. The criterion “Convergence performance” evaluates 
time consumed by the simulation, while ‘convergence robustness” 
evaluates possibility to get incorrect results, e.g. no solution, local 
minimum. 
 
 
Table 5.  
Simulation settings 

Option Value 
Solver ode23tb (stiff/TR-BDF2) 

Max step size auto 
Min step size auto 

Zero crossing control disable all 
Relative tolerance auto 
Absolute tolerance auto 

 
 
Table 6.  
Optimization (minimization) settings 

Option Value 
Gradient type basic 

Algorithm lsqnonlin 
Cost type SSE 

DiffMaxChange 0.1 
DiffMinChange 1E-08 

Large scale true 
MaxIter 28 

RobustCost False 
TolCon 1E-6 
TolFun 1E-6 

 
 
Table 7. 
Comparison of grey-box system identification tools  

Tool 
 

Property 

System 
Identification 

Toolbox 

Simulink® 
Parameter 

Estimation™ 
On-line 

identification yes no 

Simulink support no yes 
Nonlinear models 

support yes yes 

Convergence 
performance moderate low 

Convergence 
robustness good low 

Multiple output 
model support no yes 

 
 

A process of model adjustment is visualized in Fig. 3 after a 
specific number of iterations. 
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Fig. 3. Convergence progress (reference model response - grey, 
optimized model response - dark grey): a) 3rd iteration,  
b) 10th iteration, c) 20th iteration 
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Fig. 4. Trends of the estimating parameters 
 
 

2. Advanced demonstration 
 

This advanced example demonstrates estimation of 
parameters of a continuous-time model based on the servo-
hydraulic test rig. The model is developed for the Hydropuls® 
MSP25 servo-hydraulic test-rig, equipped with an IST8000 
electronic controller. The test rig is equipped with an oil supply 
system (the so-called servo-pack) that provides a pressure of 
28 MPa at a flow-rate of 90 l/min. The actuator provides a 25 kN 
force at the rod, while the maximum stroke is 250 mm at the 
maximum achievable velocity of 3 m/s. The main components of 
the servo-hydraulic system are the hydraulic actuator with 
integrated displacement transducer in a piston-rod assembly (IST-
Schenk) and the three-stage servo-valve system. The test rig is 
equipped with a PID controller. The excitation signal is converted 
into a voltage applied to the servo-valve, which controls the 
amount of oil supplied to the chambers of the actuator. 
 
 

2.1. Formulation of FP model 
 

The simulation FP model of the Hydropuls® MSP25 test-rig 
consists of a servo-valve and a hydraulic actuator model. The 
Moog G761 series (Fig. 5) industrial servo-valve consists of a 
polarized electrical torque motor and two stages of hydraulic 
power amplification. This valve dynamics is approximated by a 
transfer function whose input is a voltage and output is the spool 
displacement. 

The electromagnetic torque motor, driving the flapper, is 
controlled by an electrical current inputted from a current 
amplifier. A valve control input u (voltage) is converted into a 
current, with a current amplifier gain Ke. The hydrodynamic 
forces acting on the spool are neglected. Therefore, the spool 
position depends on the input voltage, angular natural frequency 

n,servo and damping ratio of the servovalve . 
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Fig. 3. Convergence progress (reference model response - grey, 
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Fig. 4. Trends of the estimating parameters 
 
 

2. Advanced demonstration 
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Fig. 5. The MOOG G761 servo-valve assembly 
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The pressure drops among the test rig chambers (A and B), 

input (P) and output (T) are as follows 
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      (5) 

 
The flows at all servovalve restrictions are determined by 

orifice equations based on pressure drops and spool displacement. 
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      (6) 

 
In case of hydraulic machine we can assume density of oil as 

constant because for maximal load (pressure drop=150 bar) the 
hydraulic oil density change 1% that give 0.5% change in flow. 
For pressure drop 10 bar change in flow is smaller than 0.034%. 
 

A model of a hydraulic actuator is derived assuming the 
pressures in the actuator chambers and displacement of the rod as 
the state variables. The bypass flow, controlled by the throttle 
valve, is defined by the following formula 
 

ABABleakABAB ppACdq sgn/2        (7) 

 

The total balance of the inlet and outlet flows is determined as 
follows  
 

ABBTPBB

ABATPAA

qqqq
qqqq        (8) 

 
The pressures pA and pB are determined based on the mass 

equilibrium equations, where the volumes are determined based 
on the initial oil volume in the actuator and the position of the 
piston-rod  
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BVq

dt
dp

BB

BBB

AA

AAA

0

0

)(

)(
       (9) 

 
were changes of chamber volumes 
 

xAV AA , xAV BB      (10) 
 

Finally, the displacement of the actuator x is calculated based 
on the force equilibrium equation 
 

),()( xxFApApxFmx extBBAAfric       (11) 
 
where: AA, AB are the pressure acting areas of two sides of the 
piston; pA, pB are the pressures in the chambers. The dry friction 
force Ffric between the piston and cylinder and rod and seal is 
modelled as follows: 
 

ref
fric_maxfric v

xFF tanh  (12) 

 
The friction force Ffric depends on the direction of the rod 

travel x, not on velocity nor piston position. The maximal friction 
force Ffric_max is obtained from experimental tests. The applied 
friction model uses the hyperbolic tangent function tanh(.) which 
approximates measurement data and the reference velocity vref 
which provides a smooth (realistic) switch of friction force similar 
to measurement data.  
 

A model of the electronic controller uses a program command 
and sensor feedback to control the servovalve. A test rig 
controller uses a group of gain controls, i.e. proportional (P), 
integral (I) and derivative (D) gains. A transfer function 
representation of a PID controller is given as follows 
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     (13) 

 

where 
 

xxx exp .       (14) 
 

The output uPID of the PID controller is used as input of 
servovalve transfer function. The equations have been 
implemented in the MATLAB/Simulink package [1]. 
 
 
Table 8.  
Values of fixed model parameters 

Configuration parameters Values 
PID controls 

PID proportional gain KP 400 [V/m] 
PID integral gain KI 0 [V•s/m] 

PID derivative gain KD 0 [V/(m•s)] 
Hydraulic actuator 

oil density 960 [kg/m3] 
chamber volume VA and VB 480 [ccm] 

pressure acting area AA and AB 1920 [mm2] 
Piston-rod assembly mass m 45 [kg] 

fluid bulk modulus B 1.5e3 [MPa] 
reference friction velocity vref 1[mm/s] 

Servovalve 
amplifier gain Ke 1 [A/V] 
spool gain Kspool 0.0024 [m/A] 

servovalve channel width b 5[mm] 
 
 
Table 9.  
Values of free (phenomenological) model parameters 

Configuration parameters Values 
Hydraulic actuator 

piston friction force Ffric max 50 [N] 
product CdAB Aleak 3.2863e-3 [mm2] 

  
Servovalve 

discharge coefficient Cd 0.2191 [-] 
damping ratio  0.3701 [-] 

natural frequency n,servo 43 [Hz] 
  

 
Table 8 specifies values of the physical and geometrical 

parameters used in the simulation model, while Table 9 specifies 
phenomenological ones to be estimated. 
 
 
2.2. Estimation with use of Simulink® 
Parameter Estimation tool 
 

The goal of this numerical study is to reconstruct (estimate) 
true values of the phenomenological parameters of the test-rig 
model, while the geometrical and physical parameters are known. 
The selected parameters and their true values are specified in 
Tables 10, 11 and 8, respectively to scenario A and B. The 
scenario A considers estimation of a single free parameter, while 
the scenario B considers estimation of two free parameters 

simultaneously. The input to the model is the demanded 
displacement of the rod of the actuator, while the output is the 
measured (simulated) displacement. The boundary conditions 
were imposed on the estimating parameters values according to 
physical limitations. The iterative convergence process was run 
for a couple of minutes (15 min) to minimize the error objective 
function. The error was computed comparing reference system 
output (displacement) with predicted model output after each 
iteration. The estimated values of the parameters are presented in 
Tables 10, 11. 
 
 
Table 10.  
True and estimated values of the parameters - Case A 

 
Parameter to be 

estimated 
 

 
True value 

 
Estimated 

value 
 

 
error 

flow coefficient [-] 5e-05 5e-05 0 % 
natural frequency of 
the servovalve [Hz] 43 43 0 % 

leakage flow from 
lower to upper 

chamber of actuator 
[m3/s], 

1.5e-10 1.5e-10 0 % 

 
Table 11.  
True and estimated values of the parameters - Case B 

 
Parameter to be 

estimated 
 

 
True value 

 
Estimated 

value 
 

 
error 

damping ratio of the 
servovalve 0.98 0.97297 0.7% 

leakage flow from 
lower to upper 

chamber of actuator 
[m3/s], 

1.5e-10 1.5031e-10 2% 

 
The true values of the parameters were reconstructed without 

an error in the case A, while in the case B two free parameters 
were estimated with error lower than 2%. The case B shows 
difficulty in correct evaluation of the “true” value of the 
parameters when a few parameters is simultaneously estimated. 
 
 

3. Summary 
 

The paper proposes and demonstrates a first-principle data-
driven approach towards modeling of technical systems [2-3]. The 
FPDD model offers physical insight and sufficient numerical 
performance to be applicable in understanding underlying 
physical phenomena, designing control systems, diagnosing and 
optimizing processes [4-13]. FPDD models can be used in many 
areas where physical understanding is critical, e.g. design of new 
products or early warning diagnostics of large industrial 
installations. The model is represented by nonlinear state-space 
equations having geometrical and physical parameters deduced 
from available documentation, and adjustable phenomenological 
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Fig. 5. The MOOG G761 servo-valve assembly 
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The pressure drops among the test rig chambers (A and B), 

input (P) and output (T) are as follows 
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The flows at all servovalve restrictions are determined by 

orifice equations based on pressure drops and spool displacement. 
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In case of hydraulic machine we can assume density of oil as 

constant because for maximal load (pressure drop=150 bar) the 
hydraulic oil density change 1% that give 0.5% change in flow. 
For pressure drop 10 bar change in flow is smaller than 0.034%. 
 

A model of a hydraulic actuator is derived assuming the 
pressures in the actuator chambers and displacement of the rod as 
the state variables. The bypass flow, controlled by the throttle 
valve, is defined by the following formula 
 

ABABleakABAB ppACdq sgn/2        (7) 

 

The total balance of the inlet and outlet flows is determined as 
follows  
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The pressures pA and pB are determined based on the mass 

equilibrium equations, where the volumes are determined based 
on the initial oil volume in the actuator and the position of the 
piston-rod  
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were changes of chamber volumes 
 

xAV AA , xAV BB      (10) 
 

Finally, the displacement of the actuator x is calculated based 
on the force equilibrium equation 
 

),()( xxFApApxFmx extBBAAfric       (11) 
 
where: AA, AB are the pressure acting areas of two sides of the 
piston; pA, pB are the pressures in the chambers. The dry friction 
force Ffric between the piston and cylinder and rod and seal is 
modelled as follows: 
 

ref
fric_maxfric v

xFF tanh  (12) 

 
The friction force Ffric depends on the direction of the rod 

travel x, not on velocity nor piston position. The maximal friction 
force Ffric_max is obtained from experimental tests. The applied 
friction model uses the hyperbolic tangent function tanh(.) which 
approximates measurement data and the reference velocity vref 
which provides a smooth (realistic) switch of friction force similar 
to measurement data.  
 

A model of the electronic controller uses a program command 
and sensor feedback to control the servovalve. A test rig 
controller uses a group of gain controls, i.e. proportional (P), 
integral (I) and derivative (D) gains. A transfer function 
representation of a PID controller is given as follows 
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where 
 

xxx exp .       (14) 
 

The output uPID of the PID controller is used as input of 
servovalve transfer function. The equations have been 
implemented in the MATLAB/Simulink package [1]. 
 
 
Table 8.  
Values of fixed model parameters 

Configuration parameters Values 
PID controls 

PID proportional gain KP 400 [V/m] 
PID integral gain KI 0 [V•s/m] 

PID derivative gain KD 0 [V/(m•s)] 
Hydraulic actuator 

oil density 960 [kg/m3] 
chamber volume VA and VB 480 [ccm] 

pressure acting area AA and AB 1920 [mm2] 
Piston-rod assembly mass m 45 [kg] 

fluid bulk modulus B 1.5e3 [MPa] 
reference friction velocity vref 1[mm/s] 

Servovalve 
amplifier gain Ke 1 [A/V] 
spool gain Kspool 0.0024 [m/A] 

servovalve channel width b 5[mm] 
 
 
Table 9.  
Values of free (phenomenological) model parameters 

Configuration parameters Values 
Hydraulic actuator 

piston friction force Ffric max 50 [N] 
product CdAB Aleak 3.2863e-3 [mm2] 

  
Servovalve 

discharge coefficient Cd 0.2191 [-] 
damping ratio  0.3701 [-] 

natural frequency n,servo 43 [Hz] 
  

 
Table 8 specifies values of the physical and geometrical 

parameters used in the simulation model, while Table 9 specifies 
phenomenological ones to be estimated. 
 
 
2.2. Estimation with use of Simulink® 
Parameter Estimation tool 
 

The goal of this numerical study is to reconstruct (estimate) 
true values of the phenomenological parameters of the test-rig 
model, while the geometrical and physical parameters are known. 
The selected parameters and their true values are specified in 
Tables 10, 11 and 8, respectively to scenario A and B. The 
scenario A considers estimation of a single free parameter, while 
the scenario B considers estimation of two free parameters 

simultaneously. The input to the model is the demanded 
displacement of the rod of the actuator, while the output is the 
measured (simulated) displacement. The boundary conditions 
were imposed on the estimating parameters values according to 
physical limitations. The iterative convergence process was run 
for a couple of minutes (15 min) to minimize the error objective 
function. The error was computed comparing reference system 
output (displacement) with predicted model output after each 
iteration. The estimated values of the parameters are presented in 
Tables 10, 11. 
 
 
Table 10.  
True and estimated values of the parameters - Case A 

 
Parameter to be 

estimated 
 

 
True value 

 
Estimated 

value 
 

 
error 

flow coefficient [-] 5e-05 5e-05 0 % 
natural frequency of 
the servovalve [Hz] 43 43 0 % 

leakage flow from 
lower to upper 

chamber of actuator 
[m3/s], 

1.5e-10 1.5e-10 0 % 

 
Table 11.  
True and estimated values of the parameters - Case B 

 
Parameter to be 

estimated 
 

 
True value 

 
Estimated 

value 
 

 
error 

damping ratio of the 
servovalve 0.98 0.97297 0.7% 

leakage flow from 
lower to upper 

chamber of actuator 
[m3/s], 

1.5e-10 1.5031e-10 2% 

 
The true values of the parameters were reconstructed without 

an error in the case A, while in the case B two free parameters 
were estimated with error lower than 2%. The case B shows 
difficulty in correct evaluation of the “true” value of the 
parameters when a few parameters is simultaneously estimated. 
 
 

3. Summary 
 

The paper proposes and demonstrates a first-principle data-
driven approach towards modeling of technical systems [2-3]. The 
FPDD model offers physical insight and sufficient numerical 
performance to be applicable in understanding underlying 
physical phenomena, designing control systems, diagnosing and 
optimizing processes [4-13]. FPDD models can be used in many 
areas where physical understanding is critical, e.g. design of new 
products or early warning diagnostics of large industrial 
installations. The model is represented by nonlinear state-space 
equations having geometrical and physical parameters deduced 
from available documentation, and adjustable phenomenological 

3.  summary

2.2.  Estimation with use of simulink® 
Parameter Estimation tool
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parameters (e.g. friction, leakage coefficients) that are estimated 
from measurement data.  

The first part of the paper [14] provides a background 
discussing model taxonomy and parameter estimation methods, 
while this second part of the paper provides numerical examples 
of FPDD model performance focusing on estimation of single and 
multiple parameters.  

Adjusting a FPDD model to data is, in most cases, a non-
convex optimization problem and the criterion function may have 
several local minima [15]. It is therefore most natural to use 
physical insight to provide initial values to ensure robustness and 
fast convergence of the optimization process as well as to reduce 
the dimensionality of the parameters space by selecting only these 
parameters values of which are difficult to derive. Using physics-
based initial conditions has significant advantage over blind 
(random) initialization of the optimization routine and 
furthermore, physical meaning of the parameters allows additional 
constraints to be set on the error function and/or model parameters 
narrowing the domain in which the optimum is being searched 
for. For example, the damping ratio in the model of the servo-
valve system (Eq. 3) is limited in the range from zero to unity. 
Ranges of tunable model parameters constitute a hyper-cube in 
the so-called parameter space. The number of parameters defines 
dimensionality of such a space, for instance, if the model has two 
parameters, the parameter space is two-dimensional and ranges of 
the parameters form a rectangle. Optimization problem is stated 
by giving the parameter space, a criterion function and a domain 
over which the function is defined. Solving an optimization 
problem means finding extrema of the criterion function that are 
located within the domain. Typically, it suffices to find a single 
extremum located within proximity of a given point in the 
domain, to which end an iterative optimization process can be 
used. Constructing the criterion function requires multiple 
observed data points to be available and, ideally, to be uniformly 
distributed covering the entire operating range. 

Future investigations are planned to focus on repeatability and 
reproducibility of the system identification results obtained for 
adjusting model parameters based on a number of operational data 
sets.  
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Nomenclature
 

t continues time domain 
x(t) the n-dimensional state vector 
u(t) input 
y(t) output 
K bulk modulus of oil (oil stiffness) [N/m2] 
F load [N] 
xspool displacement of servo valve spool [m] 
xspool,min lower position of servo valve spool [m] 
xspool,max upper position of servo valve spool [m] 

xspool,0 dead zone of servo valve spool [m] 
Ke voltage-current amplifier proportional gain [A/V] 
Kspool current-displacement  proportional gain [m/A] 
KP PID proportional gain [V/m] 
KI PID integral gain [V·s/m] 
KD PID derivative gain [V/(m·s)] 
TI PID integral time [s] 
TD PID derivative time [s] 
x4 displacement of actuator [m] 
x4,expected expected displacement of actuator [m] 

x4 
difference between expected and obtained 
displacement of actuator [m] 

u spool voltage [V] 
uPID output voltage from PID controller [V] 

servon, Natural angular frequency of the servovalve [Hz] 
Damping ratio of the servovalve [-] 

pA pressure in the upper actuator chamber (chamber A) 
[Pa] 

pB pressure in the lower actuator chamber (chamber B) 
[Pa] 

pP pressure at the input of actuator (supply pump 
pressure) [Pa] 

pT pressure at the output of actuator [Pa] 

pPA pressure drop between input and lower chamber of 
actuator [Pa] 

pPB pressure drop between input and upper chamber of 
actuator [Pa] 

pAT pressure drop between lower chamber and output of 
actuator [Pa] 

pBT pressure drop between upper chamber and output of 
actuator [Pa] 

pAB pressure drop between lower and upper chamber of 
actuator [Pa] 

qA sum of inflows and outflows to lower chamber of 
actuator [m3/s] 

qB sum of inflows and outflows to upper chamber of 
actuator [m3/s] 

qPA flow from input to lower chamber of actuator [m3/s] 
qPB flow from input to upper chamber of actuator [m3/s] 

qAT flow from lower chamber to output of actuator 
[m3/s] 

qBT flow from upper chamber to output of actuator 
[m3/s] 

qAB leakage flow from lower to upper chamber of 
actuator [m3/s] 

Cd discharge coefficient [-] 
b width of servovalve flow hole [m] 

AA area of cross-section of  lower chamber of actuator 
[m2] 

AB 
area of cross-section of  upper chamber of actuator 
[m2] 

Aleakage 
area of leakage between upper and lower chamber 
of actuator [m2] 

VA volume of  lower chamber of actuator [m3] 
VB volume of  upper chamber of actuator [m3] 
VA0 initial volume of  lower chamber of actuator [m3] 
VB0 initial volume of  upper chamber of actuator [m3] 

m4 
mass of moving part of actuator (actuator piston, 
actuator rod, adapter) [m] 
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parameters (e.g. friction, leakage coefficients) that are estimated 
from measurement data.  

The first part of the paper [14] provides a background 
discussing model taxonomy and parameter estimation methods, 
while this second part of the paper provides numerical examples 
of FPDD model performance focusing on estimation of single and 
multiple parameters.  

Adjusting a FPDD model to data is, in most cases, a non-
convex optimization problem and the criterion function may have 
several local minima [15]. It is therefore most natural to use 
physical insight to provide initial values to ensure robustness and 
fast convergence of the optimization process as well as to reduce 
the dimensionality of the parameters space by selecting only these 
parameters values of which are difficult to derive. Using physics-
based initial conditions has significant advantage over blind 
(random) initialization of the optimization routine and 
furthermore, physical meaning of the parameters allows additional 
constraints to be set on the error function and/or model parameters 
narrowing the domain in which the optimum is being searched 
for. For example, the damping ratio in the model of the servo-
valve system (Eq. 3) is limited in the range from zero to unity. 
Ranges of tunable model parameters constitute a hyper-cube in 
the so-called parameter space. The number of parameters defines 
dimensionality of such a space, for instance, if the model has two 
parameters, the parameter space is two-dimensional and ranges of 
the parameters form a rectangle. Optimization problem is stated 
by giving the parameter space, a criterion function and a domain 
over which the function is defined. Solving an optimization 
problem means finding extrema of the criterion function that are 
located within the domain. Typically, it suffices to find a single 
extremum located within proximity of a given point in the 
domain, to which end an iterative optimization process can be 
used. Constructing the criterion function requires multiple 
observed data points to be available and, ideally, to be uniformly 
distributed covering the entire operating range. 

Future investigations are planned to focus on repeatability and 
reproducibility of the system identification results obtained for 
adjusting model parameters based on a number of operational data 
sets.  
 
 

Acknowledgements 
 

The author gratefully acknowledges the financial support of 
the research project N N502 087838 funded by the Polish 
Ministry of Science (MNiI). 
 
 

Nomenclature
 

t continues time domain 
x(t) the n-dimensional state vector 
u(t) input 
y(t) output 
K bulk modulus of oil (oil stiffness) [N/m2] 
F load [N] 
xspool displacement of servo valve spool [m] 
xspool,min lower position of servo valve spool [m] 
xspool,max upper position of servo valve spool [m] 

xspool,0 dead zone of servo valve spool [m] 
Ke voltage-current amplifier proportional gain [A/V] 
Kspool current-displacement  proportional gain [m/A] 
KP PID proportional gain [V/m] 
KI PID integral gain [V·s/m] 
KD PID derivative gain [V/(m·s)] 
TI PID integral time [s] 
TD PID derivative time [s] 
x4 displacement of actuator [m] 
x4,expected expected displacement of actuator [m] 

x4 
difference between expected and obtained 
displacement of actuator [m] 

u spool voltage [V] 
uPID output voltage from PID controller [V] 

servon, Natural angular frequency of the servovalve [Hz] 
Damping ratio of the servovalve [-] 

pA pressure in the upper actuator chamber (chamber A) 
[Pa] 

pB pressure in the lower actuator chamber (chamber B) 
[Pa] 

pP pressure at the input of actuator (supply pump 
pressure) [Pa] 

pT pressure at the output of actuator [Pa] 

pPA pressure drop between input and lower chamber of 
actuator [Pa] 

pPB pressure drop between input and upper chamber of 
actuator [Pa] 

pAT pressure drop between lower chamber and output of 
actuator [Pa] 

pBT pressure drop between upper chamber and output of 
actuator [Pa] 

pAB pressure drop between lower and upper chamber of 
actuator [Pa] 

qA sum of inflows and outflows to lower chamber of 
actuator [m3/s] 

qB sum of inflows and outflows to upper chamber of 
actuator [m3/s] 

qPA flow from input to lower chamber of actuator [m3/s] 
qPB flow from input to upper chamber of actuator [m3/s] 

qAT flow from lower chamber to output of actuator 
[m3/s] 

qBT flow from upper chamber to output of actuator 
[m3/s] 

qAB leakage flow from lower to upper chamber of 
actuator [m3/s] 

Cd discharge coefficient [-] 
b width of servovalve flow hole [m] 

AA area of cross-section of  lower chamber of actuator 
[m2] 

AB 
area of cross-section of  upper chamber of actuator 
[m2] 

Aleakage 
area of leakage between upper and lower chamber 
of actuator [m2] 

VA volume of  lower chamber of actuator [m3] 
VB volume of  upper chamber of actuator [m3] 
VA0 initial volume of  lower chamber of actuator [m3] 
VB0 initial volume of  upper chamber of actuator [m3] 

m4 
mass of moving part of actuator (actuator piston, 
actuator rod, adapter) [m] 
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