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Abstract
Purpose: Show the relationship between geometric characteristics of the weld bead and the optical-acoustic emissions 
from electric arc during welding in the GMAW-S process.
Design/methodology/approach: Bead on plate welding experiments was carried out setting different process 
parameters. Every welding parameter group was set aiming to reach a high stability level what guarantee a geometrical 
uniformity in the weld beads. In each experiment was simultaneously acquired arc voltage, welding current, infrared and 
acoustic emissions; from them were computed parameters as arc power, acoustic peaks rate and infrared radiation rate. It 
was used a tri-dimensional LASER scanner for to acquire geometrical information from the weld beads surface as width 
and height of the bead. Depth penetration was measured from sectional cross cutting of weld beads.
Findings: Previous analysis showed that the arc emission parameters reach a stationary state with different characteristic 
for each experiment group which means that there is some correlation level between them. Posterior analysis showed 
that from infrared parameter is possible to monitoring external weld bead geometry and principally its penetration depth. 
From acoustic parameter is possible to monitoring principally the external weld bead geometry. Therefore is concluded 
that there is a close relation between the arc emissions and the weld bead geometry and that them could be used to 
measuring the welding geometrical parameters.
Research limitations/implications: After analysis it was noticed that the infrared sensing has a better performance than 
acoustic sensing in the depth penetration monitoring. Infrared sensing also sources some information about external 
geometric parameters that in conjunction with the acoustic sensing is possible to have reliable information about 
weld bead geometry. This method of sensing geometric parameters could be applied in other welding processes, but 
is necessary to have visibility of the arc, it means that for example this method cannot be used in the submerged arc 
welding - SAW process. 
Originality/value: The using two or more sensors for monitoring welding parameters increases the performance and 
reliability of the measurements. In this case, the monitoring of the weld bead geometric parameters could be possible 
from sensing arc emission and potentially it could be used as an on-line monitor, avoiding any complex electric 
connections of sensors into the welding process.
Keywords: Monitoring; Arc emissions; Geometrical parameters; Weld bead; GMAW-S
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1. Introduction 
 
Gas metal arc welding - GMAW in short circuit mode process 

(hereafter named as GMAW-S), is the manufacture process most 
used in the metallic construction industry. Diverse advantages 
such as the high rate metallic transference, elevated penetration 
and facility to welding in diverse positions, does this process 
become the most requested. When the GMAW-S process demand 
grew at industrial rates, its quality requirements and exigencies 
also were multiplied. Welding quality assessment is subject at 
multiple investigations and discussions, due to its qualification 
involve diverse criteria such as metallurgical and geometrical 
continuity throughout weld bead. The weld bead geometry is 
result of previous setting of welding parameters and its on-line 
monitoring is necessary for guarantying the welding quality. 
Classically are monitored arc tension and welding current.  

These parameters are stability indicators of electric arc and 
also their behaviour have direct implications in the heat and metal 
transference which is reflected in the weld bead geometry. 
Besides classical parameters, during welding, the electric arc 
produces mechanical, optical and electromagnetic emissions. It is 
known that expert welders use some arc emissions as sound and 
luminosity for monitoring and controlling the welding process 
aiming to achieve high stability and quality. [1]. Different 
researches showed that is possible to detect some interference and 
to assess the welding quality by measuring the sound and optical 
emissions as infrared band [2-7]. Besides perturbations 
detection, it was also shown that from infrared emissions is 
possible to measure depth penetration. The goal of this paper is 
to show the relationships between acoustic and infrared arc 
emissions and geometric characteristics of the weld bead. In 
first time, was approached the relationships between direct and 
indirect welding parameters. Secondly it was described the 
methodology after was approached the results and finally the 
principal conclusions. 

 
1.1. Relationships between direct and indirect 
welding parameters 
 

The Figure 1 shows a classification of welding parameter 
resultant of conjunctions of different classifications reviewed 
[8]. The parameters were divided into direct (DWP) and indirect 
(IWP), which correspond at input and output parameters 
respectively. Within IWP, fix and adjustable parameters are set 
before start the welding process. Are named as fix parameters 
all previous characteristics of materials surrounded in welding, 
as well as the structural design and configuration of joint. Some 
adjustable parameters such as current and voltage waveform, 
contact distance tip to work piece (CTWD), wire feed speed and 
travel speed can be varied on-line during the process. This 
happens in feedback control welding process. The DWP is 
separate into weld bead parameters and arc welding phenomena. 
The first group is composed by parameters related at weld bead 
characteristic such as external geometry, depth penetration, 
reinforcement, fusion zone geometry, mechanical properties, 
microstructure, and discontinuities. The second group is 
composed by the arc welding emissions. 

 
Fig. 1. Welding parameters classification 

 
Figure 1 makes it clear that the welding process is a multi-

input, multi-output (MIMO), multivariable system. Also, note that 
the relation between the input and output variables is dynamic, 
highly nonlinear, and strongly coupled. A schematic of the effect 
of some IWP on some DWP is shown in Figure 2 [9], where (+) 
indicates an increase is followed by an increase and (-) indicates 
an increase is followed by a decrease. 

 
Fig. 2. Relationship between welding parameters in GMAW 
process 

 
 

2. Experimental setup. 
 
A decibel meter and a pyrometer in the cases of acoustic and 

infrared emissions respectively were used. Their setups are 
showed in the Figure 3. The decibel meter B&K 2250 uses a 4189 
type microphone with -26 ±1.5 dB gain, ±1.0 output amplitude 
signal and sensitivity of 50 V/Pa. This device was covered with a 
aluminium shell for protection against welding spatter. Studies in 
psychoacoustic have determined that if the electric arc sound 
signal does not exceed 400 ms, this will be a good indicator of the 
behaviour weld process [4]. Following these considerations, in 
this work the microphone was positioned at 200 mm from the arc. 
The pyrometer TL-S-25 has as output signal a current sign 
between 4-20 mA which is proportional to the registered 
temperature (measuring Range 800–2.500 °C). To locate the 
position of the sensor correctly (arc welding and weld pool), the 
TL-S-25 pattern provides a tool for localizing the best place for 
the temperature measurement. This tool is a laser incorporated 
into a sensor, which shows the focus; for this pattern the focus 
localization is 600 mm. 
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(hereafter named as GMAW-S), is the manufacture process most 
used in the metallic construction industry. Diverse advantages 
such as the high rate metallic transference, elevated penetration 
and facility to welding in diverse positions, does this process 
become the most requested. When the GMAW-S process demand 
grew at industrial rates, its quality requirements and exigencies 
also were multiplied. Welding quality assessment is subject at 
multiple investigations and discussions, due to its qualification 
involve diverse criteria such as metallurgical and geometrical 
continuity throughout weld bead. The weld bead geometry is 
result of previous setting of welding parameters and its on-line 
monitoring is necessary for guarantying the welding quality. 
Classically are monitored arc tension and welding current.  

These parameters are stability indicators of electric arc and 
also their behaviour have direct implications in the heat and metal 
transference which is reflected in the weld bead geometry. 
Besides classical parameters, during welding, the electric arc 
produces mechanical, optical and electromagnetic emissions. It is 
known that expert welders use some arc emissions as sound and 
luminosity for monitoring and controlling the welding process 
aiming to achieve high stability and quality. [1]. Different 
researches showed that is possible to detect some interference and 
to assess the welding quality by measuring the sound and optical 
emissions as infrared band [2-7]. Besides perturbations 
detection, it was also shown that from infrared emissions is 
possible to measure depth penetration. The goal of this paper is 
to show the relationships between acoustic and infrared arc 
emissions and geometric characteristics of the weld bead. In 
first time, was approached the relationships between direct and 
indirect welding parameters. Secondly it was described the 
methodology after was approached the results and finally the 
principal conclusions. 

 
1.1. Relationships between direct and indirect 
welding parameters 
 

The Figure 1 shows a classification of welding parameter 
resultant of conjunctions of different classifications reviewed 
[8]. The parameters were divided into direct (DWP) and indirect 
(IWP), which correspond at input and output parameters 
respectively. Within IWP, fix and adjustable parameters are set 
before start the welding process. Are named as fix parameters 
all previous characteristics of materials surrounded in welding, 
as well as the structural design and configuration of joint. Some 
adjustable parameters such as current and voltage waveform, 
contact distance tip to work piece (CTWD), wire feed speed and 
travel speed can be varied on-line during the process. This 
happens in feedback control welding process. The DWP is 
separate into weld bead parameters and arc welding phenomena. 
The first group is composed by parameters related at weld bead 
characteristic such as external geometry, depth penetration, 
reinforcement, fusion zone geometry, mechanical properties, 
microstructure, and discontinuities. The second group is 
composed by the arc welding emissions. 

 
Fig. 1. Welding parameters classification 

 
Figure 1 makes it clear that the welding process is a multi-

input, multi-output (MIMO), multivariable system. Also, note that 
the relation between the input and output variables is dynamic, 
highly nonlinear, and strongly coupled. A schematic of the effect 
of some IWP on some DWP is shown in Figure 2 [9], where (+) 
indicates an increase is followed by an increase and (-) indicates 
an increase is followed by a decrease. 
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2. Experimental setup. 
 
A decibel meter and a pyrometer in the cases of acoustic and 

infrared emissions respectively were used. Their setups are 
showed in the Figure 3. The decibel meter B&K 2250 uses a 4189 
type microphone with -26 ±1.5 dB gain, ±1.0 output amplitude 
signal and sensitivity of 50 V/Pa. This device was covered with a 
aluminium shell for protection against welding spatter. Studies in 
psychoacoustic have determined that if the electric arc sound 
signal does not exceed 400 ms, this will be a good indicator of the 
behaviour weld process [4]. Following these considerations, in 
this work the microphone was positioned at 200 mm from the arc. 
The pyrometer TL-S-25 has as output signal a current sign 
between 4-20 mA which is proportional to the registered 
temperature (measuring Range 800–2.500 °C). To locate the 
position of the sensor correctly (arc welding and weld pool), the 
TL-S-25 pattern provides a tool for localizing the best place for 
the temperature measurement. This tool is a laser incorporated 
into a sensor, which shows the focus; for this pattern the focus 
localization is 600 mm. 
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Fig. 7. Geometric parameters 

Where,  is the average of the geometric parameter computed 
(it can be width, height or area),Di  is the th measured parameter, 

 is the total geometric data of each weld bead scanned. 
After measuring the geometric parameters in the weld bead, 

we can to notice their relationships for each welding speed. 
Figures 7.a, b, and c represent the evolution of the geometrical 
parameters in four arc voltage levels for 7, 9 and 11 mm/s 
welding speed respectively. In all below graphs are noticed that 
there is inverse relationship between the arc voltage and the 
height of weld bead. Unlike height, the width and depth have a 
direct relationship with the arc voltage. This means that when the 
arc voltage increases, the width and depth also increase and the 
height decreases. This inverse proportion is similar for each 
welding speed. Also is noticed that when the welding speed 
increases, all geometrical parameters decrease in numerical terms; 
they decrease also when the wire feed speed increases. It has 
sense, because when the welding speed increases the time for 
transfer cycle is minor and so the metal transferred from wire tip 
to welding pool decreases when the welding speed increases. This 
fact gives origin at dimensional changes in each geometric 
parameter. 
 
3.2. Arc Emissions 

 
Figure 8 shows a data window of welding parameter signals 

monitored simultaneously, voltage and current (A), acoustic 
emission (B) and infrared emission (C). 

 

 

 

 
 

Fig. 8. Welding parameters 
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Fig. 7. Geometric parameters 

Where,  is the average of the geometric parameter computed 
(it can be width, height or area),Di  is the th measured parameter, 

 is the total geometric data of each weld bead scanned. 
After measuring the geometric parameters in the weld bead, 

we can to notice their relationships for each welding speed. 
Figures 7.a, b, and c represent the evolution of the geometrical 
parameters in four arc voltage levels for 7, 9 and 11 mm/s 
welding speed respectively. In all below graphs are noticed that 
there is inverse relationship between the arc voltage and the 
height of weld bead. Unlike height, the width and depth have a 
direct relationship with the arc voltage. This means that when the 
arc voltage increases, the width and depth also increase and the 
height decreases. This inverse proportion is similar for each 
welding speed. Also is noticed that when the welding speed 
increases, all geometrical parameters decrease in numerical terms; 
they decrease also when the wire feed speed increases. It has 
sense, because when the welding speed increases the time for 
transfer cycle is minor and so the metal transferred from wire tip 
to welding pool decreases when the welding speed increases. This 
fact gives origin at dimensional changes in each geometric 
parameter. 
 
3.2. Arc Emissions 

 
Figure 8 shows a data window of welding parameter signals 

monitored simultaneously, voltage and current (A), acoustic 
emission (B) and infrared emission (C). 

 

 

 

 
 

Fig. 8. Welding parameters 
 

ACOUSTIC EMISSIONS: 
 

The arc voltage is characterized by ignitions and extinction 
arc sequence cycles (A) and that the arc sound fit the arc voltage 
cycles. In every ignition of the arc voltage there is a big sound 
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Fig. 14. Infrared emission and depth penetration 

 
The distributions of ignition In the Figure 11 is shown the 

evolution for the ignition rate against wire feed speed for four arc 
voltage levels. Each graph (A, B and C) was plotted for welding 
speeds: 7, 9 and 11 mm/s respectively.  rates have a progressive 
and continuous increase in function of wire feed speed for all 
welding speed rates. The proportionality between the short circuit 
rate and the wire feed speed is direct; it means that when increases 
one increase the other. This happens contrarily in the case of the 
arc voltage. When there are increases in arc voltage, the rate of 
short circuits decreases. We can notice also that the standard 
deviation is greater when the arc voltage increases.  

 
INFRAED RATE: 
 

As explained in section 3.2, the infrared radiation does not fit the 
sequence of short circuits and ignitions produced in the electric arc. 
Nevertheless, infrared emissions fits at arc power (root mean square) 

as is shown in Figure 12 where is possible to notice changes in two 
levels of arc power also fitted by infrared emission.  

Figure 13. Acoustic emission and weld bead dimensions 
Figures 13 - a, b and c, show the relationship between the average 
ignition rate and weld bead height (solid) and width (dotted) for 7, 
9 and 11 mm/s welding speed respectively. From those graphs we 
can to notice that when increases the arc voltage, ignitions rate 
decreases as well as weld bead height but there is an inverse 
relationship with the weld bead width which decreases. When 
welding speed is increased the weld bead height and width 
decrease. In Figure 14 is shown the evolution of the depth 
penetration and how the infrared rate behaviour is for 7, 9 and 11 
mm/s of welding speed. In all graphs is possible to notice that the 
infrared rate increases when the arc voltage is increased too. From 
all graphs, the weld beads performed with 11 mm/s show less 
variation on their responses and comparing it with their responses 
in ignition rate (Figure11), infrared emission rate (Figure 13) as 
well as with the weld bead geometry (Figure 7) we can notice that 
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Fig. 14. Infrared emission and depth penetration 

 
The distributions of ignition In the Figure 11 is shown the 

evolution for the ignition rate against wire feed speed for four arc 
voltage levels. Each graph (A, B and C) was plotted for welding 
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and continuous increase in function of wire feed speed for all 
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arc voltage. When there are increases in arc voltage, the rate of 
short circuits decreases. We can notice also that the standard 
deviation is greater when the arc voltage increases.  
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Figure 13. Acoustic emission and weld bead dimensions 
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ignition rate and weld bead height (solid) and width (dotted) for 7, 
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relationship with the weld bead width which decreases. When 
welding speed is increased the weld bead height and width 
decrease. In Figure 14 is shown the evolution of the depth 
penetration and how the infrared rate behaviour is for 7, 9 and 11 
mm/s of welding speed. In all graphs is possible to notice that the 
infrared rate increases when the arc voltage is increased too. From 
all graphs, the weld beads performed with 11 mm/s show less 
variation on their responses and comparing it with their responses 
in ignition rate (Figure11), infrared emission rate (Figure 13) as 
well as with the weld bead geometry (Figure 7) we can notice that 
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this welding set have more stability and better geometric 
uniformity.  
 Their performance can be noticed in their uniform distribution 
in the parameters described before in function of wire feed speed 
for welding speed 11 mm/s. 

For this stable set (weld bead set performed at 11 mm/s), welding 
bead performed with 19 and 20 V have shown more stability.  

This could be noticed that when the voltage exceeds 20 V, 
instabilities appear due to high welding current reduces the time 
transfer and it in combination with a slow wire feed speed could 
generates temporal instabilities, transfer mode changes till 
undesirable structural and geometric discontinuities. If the short-
circuit current is too high, it has a considerable effect on the 
pinch-off forces, causing weld spatter. The power must be high 
enough to keep the temperature of the arc sufficient for the 
continued transport of the current and it can be monitored by 
infrared emissions. Current is set indirectly by the wire feed speed 
and as it is direct related at weld heat, it can reduce with welding 
speed. For arc voltage under 19 V, welding process also becomes 
instable due to low welding current which cannot to supply 
enough heat in the metal transfer, generating electrode wire 
explosions and insufficient depth penetration and an inacceptable 
quality in the weld bead. There are different characteristics of 
welding parameters to reach a high stability. It is reached in 
GMAW-S when the pool fusion oscillation and short circuit 
frequency are same in other word, when there is balance between 
wire feed speed and its melting rate. 

 
RELATIONSHIP BETWEN ARC EMISSIONS: 
 

Figure 15 show the relationship between infrared and acoustic 
rates where can be noticed that they have an inverse relation 
which means that when infrared rate increases, ignition rate 
(monitored by acoustic emission) decreases. Also is notices that 
when is greater the arc voltage, infrared rate is greater too and 
smaller is the ignition rate. This fact happens for all speed 
welding experiments. In all graphs also is possible to notice that 
when the arc voltage increases, the ignition rate variation, 
decreases and in all cases we can notice that the infrared rate has a 
low variation. 

 
4. Conclusions 
 

In the present work was approached the relationships between 
the weld bead geometry and arc emissions in GMAW-S process. 
After arc emission signals processing, it was found that both 
emissions reach a stationary state what means that they can be 
used as a monitor of welding process parameters. From acoustic 
emission was monitored short circuit rate, and was found that is 
possible to use this parameter for fit short circuits in GMAW-S 
process. By monitoring this parameter is possible to monitor the 
arc power which has an inverse relationship as well as it also has 
an inverse relationship with weld bead height and a direct relation 
with width weld bead. It was showed too that this parameter can 
monitor depth penetration and there are some arc voltage range 
where the responses has high stability (19-20 V). 

Arc power and depth penetration was monitored satisfactory 
by infrared emission monitoring. It was noticed that there is a 
closed direct relationship between these parameters; high infrared 

rate, high depth penetration and so it possibilities to measure and 
monitor the dept penetration which is not trivial. Finally it was 
noticed that there is an inverse relationship between short circuit 
rate and infrared rate parameters which has sense because when 
the arc power increases the metal transfer rate also increases and 
the electrode wire consuming increases and the short circuit time 
cycle decreases and however its rate decreases. Welding speed 
and arc power influence arc sound as well as arc stability or metal 
transfer behaviour. The weld heat content reduces with welding 
speed. In this work, welding speed was found to affect the metal 
deposition, arc power and that acoustic and infrared emissions 
could be used for monitoring the weld bead geometry. 

 
 

 
 

 
 

 
 

Fig. 15. Arc emissions 
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in the parameters described before in function of wire feed speed 
for welding speed 11 mm/s. 

For this stable set (weld bead set performed at 11 mm/s), welding 
bead performed with 19 and 20 V have shown more stability.  

This could be noticed that when the voltage exceeds 20 V, 
instabilities appear due to high welding current reduces the time 
transfer and it in combination with a slow wire feed speed could 
generates temporal instabilities, transfer mode changes till 
undesirable structural and geometric discontinuities. If the short-
circuit current is too high, it has a considerable effect on the 
pinch-off forces, causing weld spatter. The power must be high 
enough to keep the temperature of the arc sufficient for the 
continued transport of the current and it can be monitored by 
infrared emissions. Current is set indirectly by the wire feed speed 
and as it is direct related at weld heat, it can reduce with welding 
speed. For arc voltage under 19 V, welding process also becomes 
instable due to low welding current which cannot to supply 
enough heat in the metal transfer, generating electrode wire 
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which means that when infrared rate increases, ignition rate 
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smaller is the ignition rate. This fact happens for all speed 
welding experiments. In all graphs also is possible to notice that 
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decreases and in all cases we can notice that the infrared rate has a 
low variation. 
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used as a monitor of welding process parameters. From acoustic 
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process. By monitoring this parameter is possible to monitor the 
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monitor the dept penetration which is not trivial. Finally it was 
noticed that there is an inverse relationship between short circuit 
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the arc power increases the metal transfer rate also increases and 
the electrode wire consuming increases and the short circuit time 
cycle decreases and however its rate decreases. Welding speed 
and arc power influence arc sound as well as arc stability or metal 
transfer behaviour. The weld heat content reduces with welding 
speed. In this work, welding speed was found to affect the metal 
deposition, arc power and that acoustic and infrared emissions 
could be used for monitoring the weld bead geometry. 

 
 

 
 

 
 

 
 

Fig. 15. Arc emissions 
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