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Abstract
Purpose: This manuscript deals with the FEA of the sheet metal forming process that involves various 
nonlinearities. Our objective is to develop a parametric study that can leads mainly to predict accurately the 
final geometry of the sheet blank and the distribution of strains and stresses and also to control various forming 
defects, such as thinning as well as parameters affecting strongly the final form of the sheet after forming 
process.
Design/methodology/approach: The main approach of the current paper is to conduct a validation study of 
the FEM model. In fact, a 3D parametric FEA model is build using Abaqus /Explicit standard code. Numerous 
available test data was compared to theoretical predictions via our model. Here, several elastic plastic materials 
low was used in the FEA model and then, they were validated via experimental results.
Findings: Several 2D and 3D plots, which can be used to predict incipient thinning  strengths for sheets with flat 
initial configuration, have been presented for the various loading conditions. Unfortunately, most professionals 
in the forming process, lack this expertise, which is an obstacle to fully exploit the potential of optimization 
process of metal forming structures. In this study optimization approach is used to improve the final quality of 
a deep drawn product d by determining the optimal values of geometric tools parameters.
Research limitations/implications: This paper is a first part study of a numerical parametric investigation that 
is dealing with the most influent parameters in a forming process to simulate the deep drawing of square cup 
(such as geometric, material parameters and coefficient of frictions). In the future it will be possible to get a 
large amount of information about typical sheet forming process with various material and geometric parameters 
and to control them in order to get the most accurate final form under particular loading, material and geometric 
cases.
Originality/value: This model is used with conjunction with optimisation tool to classify geometric parameters 
that are participating to failure criterion. A mono objective function has been developed within this study to 
optimise this forming process as a very practical user friend manual.
Keywords: FEM; Deep drawing; Plasticity; Friction; Explicit method; Parametric study; Modelling; 
Optimization; Clusters

Reference to this paper should be given in the following way: 
F. Ayari, E. Bayraktar, Parametric Finite Element Analysis for a square cup deep drawing process, Journal  
of Achievements in Materials and Manufacturing Engineering 48/1 (2011) 64-86. 

1. Introduction 
 

In this study we are analysing the forming of three 
dimensional shapes by deep drawing process. Different numerical 
process can be used as it is mentioned in the literature [1-5]. 

The most efficient way to analyse this type of problem is to 
analyse the forming step with a FEM code that allows both 
dynamic and static analysis. In this study, Abaqus Explicit [6] 
is used to carry FE analysis. Since the forming process is essentially 
a quasi-static problem, computations with Abaqus /Explicit are 
performed over a sufficiently long time period to render inertial 
effects negligible.  

Forming processes are generally expensive, for this reason there 
is a great amount of researches studies related to their optimizations. 
Indeed, the coupling of simulation software’s with mathematical 
algorithms for optimizing the process parameters is widely 
increasing in various fields of forming. It was demonstrated that this 
kind of coupling reduces and improves the products’ cost [7]. 

Optimization of process parameters such as die radius, blank 
holder force, friction coefficient, etc., can be accomplished based 
on their degree of importance on the sheet metal forming 
characteristics. In this investigation, a statistical approach based 
on computing with categorical array technique was adopted 
to determine the degree of importance of some geometric design 
parameters on the thickness distribution of deep drawn 
rectangular cup. Then a mono objective optimization method 
scheme has been applied in forming study to design the process 
providing guidance how to choose the best fixed geometric 
parameter which leads to the selected minimum failure criterion. 
 
 

2. Description of the initial model  
 
 

The material of the blank will form the base of the cup which 
is in contact with the face of the punch, the die and the holder. 
This material can stretch and slides over the surface of the punch; 
however, minimal variation in thickness of this material is 
expected (Figure 1). 

During a deep drawing operation, the blank is subjected 
to radial stresses due to the blank being pulled into the die cavity 
and there is also a compressive stress normal to the element which 
is due to the blank-holder pressure. Radial tensile stresses lead to 
compressive hoop stresses because of the reduction in the 
circumferential direction. 

In fact, the load applied on the blank is modelled as 
a distributed load on the contact surface holder-blank. The wall 
of the cup is primarily encountering a longitudinal tensile stress, 
as the punch transmits the drawing force through walls of the cup 
and through the holder as it is drawn into the die cavity. There 
is also a tensile hoop stress caused by the cup being held tightly 
over the punch.  

The choice of the different geometric dimensions and material 
properties was conformed to experimental previous data. In fact, 
before starting the parametric FE study, we have performed 
a comparative study with experimental previous work and we 
have used it as a validation study of this model. All the initial 
dimensions are chosen to be identical to those used in the 
experimental previous study [7]. The blank is initially square, 
150 mm by 150 mm, and is 0.78 mm for the (mild steel Ms, that 

is the material chosen to be studied in this work). The rigid die 
is a flat surface with a square hole 84 mm by 84 mm, rounded 
at the edges with a radius of 8 mm. The rigid punch measures 
70 mm by 70 mm and is rounded at the edges with the same 
10 mm radius. The blank holder can be considered a flat plate, 
since the blank never comes close to its edges. The geometry 
of these parts is illustrated by Figure 1 and Figure 2. The rigid 
surfaces are offset from the blank by half the thickness of the 
blank to account for the shell thickness.  
 
a) 

 
 
b) 

 
 
Fig. 1. a) 3D key dimensions of the FE assembly model; 
b) principal geometric parameters of the FE model 
 

While Abaqus/Explicit automatically takes the shell thickness 
into account during the contact calculation. A mass of 0.65 kg 
is attached to the blank holder, and a concentrated load of 19.6 kN 
is applied to the contact surface blank - holder. The blank holder 
is then allowed to move only in the vertical direction to 
accommodate changes in the blank thickness. The coefficient 
of friction between the sheet and the punch is taken to be variable 
from (0.01 to 0.125), and that between the Blank and the Punch. 
It is (from 0.01 to 0.25). In fact, in previous studies it was 
confirmed that the coefficient of friction between contact surfaces 
has an important effect in the forming process [1]. 

The simulated punch velocity is kept constant and equal 
to 1.66 mm/sec while the considered minimum nodal distance 
is less than the blank thickness. 
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a) 

 
b) 

 
 
Fig. 2. a) FEA model of the DDP of a square cup; b) FEA model 
of the DDP of a square cup; blank mesh 
 

The blank is made of Mild steel Ms. The relation between true 
stress and logarithmic strain, stress strain of this materials are 
done with the following expressions [7]. 

 (1) 
where  is the equivalent tensile stress, P the equivalent plastic 
strain and the other material parameters are identified by mechanical 
tests (Table 1). Figure 3 shows the equivalent stress vs. the plastic 
deformation of the MS with different test directions.  
 
Table 1. 
Material properties 

 Mild Steel 
Y (Mpa) 173.1 

E (GPa) 206 
US (MPa) 311.4 
 (kg/m3) 7800 

 
The stress-strain behaviour is defined by piecewise linear 

segments matching the Ramberg-Osgood curve up to a total 
(logarithmic) strain level of 107%, with Mises yield, isotropic 
hardening, and no rate dependence. 

Given the symmetry of the problem, it is sufficient to model 
only a one-quarter sector of the box. However, we have employed 
a one-quarter model to make it easier to visualize. We use 4-node, 
three-dimensional rigid surface elements (type R3D4) to model the 
die, the punch, and the blank holder. The blank is modelled with 
8-node, linear finite-strain shell elements (type SC8R).  

 
 
Fig. 3. The stress-strain curve used for the numerical simulations 

 
The computer time involved in running the simulation using 

explicit time integration with a given mesh is directly proportional 
to the time period of the event, since the stable time increment 
size is a function of the mesh size (length) and the material 
stiffness. Thus, it is usually desirable to run the simulation at an 
artificially high speed compared to the physical process. If the 
speed in the simulation is increased too much, the solution does 
not correspond to the low-speed physical problem; i.e., inertial 
effects begin to dominate. In a typical forming process the punch 
may move at speeds on the order of 1 m/sec, which is extremely 
slow compared to typical wave speeds in the materials to be 
formed. (The wave speed in steel is approximately 5000 m/sec.) 
In general, inertia forces will not play a dominant role for forming 
rates that are considerably higher than the nominal 1 m/sec rates 
found in the physical problem. 

In the results presented here, the drawing process is simulated 
by moving the reference node for the punch downward through 
a total distance of 11- 15- 30 and 40 mm (6.626506, 9.036145, 
18.072289 and 24.096386). In this analysis we used the technique 
of mass scaling to adjust the effective punch velocity without 
altering the material properties.  
 
 
3. The FEM model 
 

Finite element simulations of deep drawing process provide 
an effective means to investigate the interaction between the 
process parameters and the material response. They provide useful 
information for fine-tuning the production processes. In this study 
the deep drawing process of rectangular cups is modelled using 
FEA. The general purpose commercial FEA code Abaqus/Explicit 
is used for the simulations.  

The movement of the punch was defined using a pilot node. 
This node was also employed to obtain the drawing force during 
the simulation. After applying appropriate boundary conditions 
to the models of sheet, punch, die and blank holder, the numerical 
simulation of the process was performed. 

Figure 4 shows the simulation with 51 elements. The distribution 
of the von Mises stresses is illustrated in Figure 4a for the 
numerical analysis with 106 solid elements. To facilitate doing 
a comparison between various results, the remaining of the FE 
findings are presented and discussed in the next section.  

3.	�The FEM model

a) b) 

 
c) 

 
 
Fig. 4. a) Earing profile of the blank at the end of the DDP; 
b) direction used for FE validation study; c) X-Y plane projection 
of the DD, DX and DY earing profile measurements distances and 
AB Strain sampling path 
 
 

4. Validation study  
 

To check the validity of results computed by deep drawing 
simulations, two numerical comparative studies were investigated. 
Results from these two studies were compared to experimental 
results and a good correlation was deduced. These parameters 
refer to mild steel sheets.  
 
 
4.1 First validation with general displacements 
 
 

The first validation study consists on a comparison between 
numerical and experimental displacements in the following 
directions: DX-called 'rolling direction', DD (diagonal direction) 
and DY (transverse direction) as shown in Figure 4. 

Table 2 below illustrates results obtained for a square blank 
with a punch stroke of 15 mm and 40 mm for Mild steel material. 
Earring profile shows asymmetric flow. In fact, in deep drawing 
it derives from planar anisotropy. Thus, the plastic flow of 
anisotropic sheet can be regarded as the sum of two superimposed 
deformation processes occurring simultaneously; normal flow 
controlled by normal anisotropy, and asymmetric flow due to planar 
anisotropy. In fact, before the parametric study, a blank sheet 
mesh size sensitivity study has been built and as it is shown by the 
Figure 5 above a mesh size of 55, the earring profiles dimensions 
DX, DY and DD are insensitive to the mesh size variation. That is 
the reason for which we have adopted the 55 mesh size as the 
optimal value in the model. 
 
Table 2. 
Comparative results of experimental study 

Material Ms Ms 
Travel 15 mm 40 mm

DX_FEA 7.07 28.6
DX_EXP 7.0 28.1

DX_ERROR 1.0% 1.8%
DD_FEA 3.7 14.89
DD_EXP 3.9 15.1

DD_ERROR 5.1% 1.4%
DY_FEA 7.06 28.6
DY_EXP 7.1 28.5

DY_ERROR 0.6% 0.4%
 

 
 

Fig. 5. Curve that demonstrates the mesh sensitivity 
 

The numerical results presented in the Table 1 are obtained 
with the following coefficient of friction 0.02 for the Blank 
Holder contact, 0.02 for the Blank Die contact, 0.25 for the Punch 
Blank contact and then 0.034 for the Blank Holder contact, 0.04 
for the Blank for the global contact surfaces for MS material and 
0.0 Die contact, 0.16 for the Punch Blank contact, then 0.04 for 
the global contact surfaces for the Al material. These coefficients 
are chosen to simulate the real contact surfaces of the experimental 
conditions; as before each experiment both sides of the Blank 
sheet surface were wiped with a paper towel dipped in the 
lubricant and they were kept in a vertical position for 30 minutes [7]. 
Thus, we have conducted several finite element simulations 
by varying the Blank- Holder coefficient of friction, the Blank 
Die coefficient of friction and the Blank Punch coefficient of 
friction in the range from 0 to 0.25. We have measured at each 
time the edge displacements which are describing the earring 
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4.	�Validation study

4.1.	�First validation with general 
displacements
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profile in the X direction, the Y direction and the Diagonal 
direction. These displacements values were then compared to those 
obtained experimentally for the Ms Material. Results from Table 1 
show that experimental and FE earring profile displacements were 
being close so that the error is varying from 1% to 5.1%. 
 
 
4.2 Strain comparative study. 
 

The second validation to be considered in this study, consists 
of the comparison between the experimental and the numerical 
principle strains ( 1, 2, 3) in the diagonal direction of the blank 
denoted by the path AB (Figure 4), for a punch travel of 
respectively 15 mm and 40 mm with the MS material (Figs. 6, 7). 

The experimental strain profiles trend, along the diagonal path, 
was closely replicated by the FEA model. In particular, Figure 7d. 
shows a slight gap in the plot between thickness strain and 
distance along diagonal displacement of the Mild steel with 40 mm 
travel punch. The difference between experimental and numerical 
strains in this case is due to an important out of plan strain 
deformation for x = 75 mm (at the vicinity of the corner cup for 
which a maximum thinning is denoted). In general, the numerical 
values overestimate the biaxial state flow strain. As far as we are 
dealing with high anisotropic materials, the Von Mises criterion 
used for numerical strains predictions overestimates the 
experimental strain values, but this discrepancy can be allowed as 
the maximum error between numerical and experimental 
thickness strains does not exceed the 18% except for the MS with 

ultimate punch stroke of 40 mm. Yet, the simulation results 
produced the trend in deformation behaviour of the MS blank. 
In all the cases, the elements in the corner area do not reach 
a state of plastic instability even within a draw depth of 40 mm. 
 
 
5. Parametric FEM study 
 

Finite element simulations of deep drawing process provide 
an effective means to investigate the interaction between the 
process parameters and the material response. They provide useful 
information for fine-tuning the production processes. In this study 
the deep drawing process of rectangular cups is modelled using 
FEA. The general purpose commercial FEA code Abaqus/Explicit 
6.7 is used for the simulations.  
 
 
5.1 Model geometry 
 

All parts are modelled as rigid bodies except for the blank 
which is modelled as an elastic-plastic material with metal 
plasticity. The DDP simulation is accomplished in two phases: 
the blank holder applies a predetermined force on the blank then 
a displacement equal to the desired depth is applied to the punch. 

All geometric dimensions of the parts may vary and the model 
geometry can be easily changed. Parts used in the DDP are shown 
by Figure 1b, principal dimensions of a cup shown therein may be 

 

 
 
Fig. 6. Comparison between FEA and experimental results for Mild steel with punch travel of 15 mm: a) Mises stress distribution and 
deformed shape of the square cup; b) Principal strain 1 along diagonal path AB; c) Principal strain 2 along diagonal path AB; d) Principal 
strain 3 along diagonal path AB 

4.2.	�Strain comparative study 5.	�Parametric FEM study

5.1.	�Model geometry

 
 

Fig. 7. Comparison between FEA and experimental results for Mild steel with punch travel of 40 mm: a) Mises stress distribution and 
deformed shape of the square cup; b) Principal strain 1 along diagonal path AB; c) Principal strain 2 along diagonal path AB; d) Principal 
strain 3 along diagonal path AB 
 
varied in the FE model. Thus, the Figure 1b describes the 
geometric parameters of the deep cup model. In fact, tb is the 
blank thickness, WP is the punch width section, WB is the blank 
width section, WD the width of the die cavity, and respectively; 
RsP section normalized radius of the punch this radius is measured 
in the xy plane, RsD section normalized radius of the die measured 
in the xy plane, RfD fillet normalized radius of the die measured 
in the xz plane, RfP fillet normalized radius of the punch measured 
in the xz plane and SP normalize punch travel (stroke). When we 
are dealing with rectangular cup, additional geometric parameters 
are considered, such as tLP total length of the punch section, 
tLB total length of the blank and tLD total length of the die cavity. 
The parameters tLP, tLB and tLD are similar to WP, WB and WD used 
in the case of square cup but they measure the dimensions in the 
xz plane for rectangular cup geometry. 

The blank is assumed to have frictional contact with the 
remaining parts. Due to the anisotropy of material behaviour, 
a 3D analysis has been considered modelling only a quarter of the 
deep drawing test is achieved. Adequate boundary conditions 
must be imposed at the symmetry axes. These symmetry axes are 
defined as the global X and Y axes in the FE mesh; the global 
Z axis is parallel to the punch displacement direction. The geometry 
of the FE model is that of the experimental process shown 
in Figure 1. The tools (punch, die and holder) are considered to be 
perfectly rigid and are modelled by rigid elements.  

The structure is modelled using both 2D and 3D elements 
available in Abaqus. The blank sheet metal was modelled using 
eight-node continuum shell elements in Abaqus (SC8R) with 

reduced integration and one element through the thickness. 
The punch, die and blank holder are all modelled as 3 dimensional 
discrete rigid surfaces using four-node rigid surface elements 
(R3D4). In addition, the geometry has been variable, mesh 
parameters such as element size and mesh density may also be 
varied. This feature is needed to ‘tune’ the model in order to get 
mesh independent converged results.  
 
 
5.2 Boundary conditions 
 

As described in section 5.1 the DDP consist of two steps. 
During the second step, the punch moves at a constant speed 
VP for a travel distance SP with blank holder pressure P still 
applied. The die is fixed while the punch and blank holder are free 
to move in a direction normal to the blank plane. The double 
symmetry of DDP configuration is exploited and only a one-fourth 
of the assembly was modelled with symmetry boundary conditions 
applied at symmetry planes.  
 
 
5.3 Numerical considerations  
 
Mass scaling 

At low punch speeds (and constant speeds) DDP is essentially 
a quasi-static process. Therefore, inertia forces do not play a major 
role and it is possible to speed up the convergence of the 
numerical solution using mass scaling. This approach requires 
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profile in the X direction, the Y direction and the Diagonal 
direction. These displacements values were then compared to those 
obtained experimentally for the Ms Material. Results from Table 1 
show that experimental and FE earring profile displacements were 
being close so that the error is varying from 1% to 5.1%. 
 
 
4.2 Strain comparative study. 
 

The second validation to be considered in this study, consists 
of the comparison between the experimental and the numerical 
principle strains ( 1, 2, 3) in the diagonal direction of the blank 
denoted by the path AB (Figure 4), for a punch travel of 
respectively 15 mm and 40 mm with the MS material (Figs. 6, 7). 

The experimental strain profiles trend, along the diagonal path, 
was closely replicated by the FEA model. In particular, Figure 7d. 
shows a slight gap in the plot between thickness strain and 
distance along diagonal displacement of the Mild steel with 40 mm 
travel punch. The difference between experimental and numerical 
strains in this case is due to an important out of plan strain 
deformation for x = 75 mm (at the vicinity of the corner cup for 
which a maximum thinning is denoted). In general, the numerical 
values overestimate the biaxial state flow strain. As far as we are 
dealing with high anisotropic materials, the Von Mises criterion 
used for numerical strains predictions overestimates the 
experimental strain values, but this discrepancy can be allowed as 
the maximum error between numerical and experimental 
thickness strains does not exceed the 18% except for the MS with 

ultimate punch stroke of 40 mm. Yet, the simulation results 
produced the trend in deformation behaviour of the MS blank. 
In all the cases, the elements in the corner area do not reach 
a state of plastic instability even within a draw depth of 40 mm. 
 
 
5. Parametric FEM study 
 

Finite element simulations of deep drawing process provide 
an effective means to investigate the interaction between the 
process parameters and the material response. They provide useful 
information for fine-tuning the production processes. In this study 
the deep drawing process of rectangular cups is modelled using 
FEA. The general purpose commercial FEA code Abaqus/Explicit 
6.7 is used for the simulations.  
 
 
5.1 Model geometry 
 

All parts are modelled as rigid bodies except for the blank 
which is modelled as an elastic-plastic material with metal 
plasticity. The DDP simulation is accomplished in two phases: 
the blank holder applies a predetermined force on the blank then 
a displacement equal to the desired depth is applied to the punch. 

All geometric dimensions of the parts may vary and the model 
geometry can be easily changed. Parts used in the DDP are shown 
by Figure 1b, principal dimensions of a cup shown therein may be 

 

 
 
Fig. 6. Comparison between FEA and experimental results for Mild steel with punch travel of 15 mm: a) Mises stress distribution and 
deformed shape of the square cup; b) Principal strain 1 along diagonal path AB; c) Principal strain 2 along diagonal path AB; d) Principal 
strain 3 along diagonal path AB 

 
 

Fig. 7. Comparison between FEA and experimental results for Mild steel with punch travel of 40 mm: a) Mises stress distribution and 
deformed shape of the square cup; b) Principal strain 1 along diagonal path AB; c) Principal strain 2 along diagonal path AB; d) Principal 
strain 3 along diagonal path AB 
 
varied in the FE model. Thus, the Figure 1b describes the 
geometric parameters of the deep cup model. In fact, tb is the 
blank thickness, WP is the punch width section, WB is the blank 
width section, WD the width of the die cavity, and respectively; 
RsP section normalized radius of the punch this radius is measured 
in the xy plane, RsD section normalized radius of the die measured 
in the xy plane, RfD fillet normalized radius of the die measured 
in the xz plane, RfP fillet normalized radius of the punch measured 
in the xz plane and SP normalize punch travel (stroke). When we 
are dealing with rectangular cup, additional geometric parameters 
are considered, such as tLP total length of the punch section, 
tLB total length of the blank and tLD total length of the die cavity. 
The parameters tLP, tLB and tLD are similar to WP, WB and WD used 
in the case of square cup but they measure the dimensions in the 
xz plane for rectangular cup geometry. 

The blank is assumed to have frictional contact with the 
remaining parts. Due to the anisotropy of material behaviour, 
a 3D analysis has been considered modelling only a quarter of the 
deep drawing test is achieved. Adequate boundary conditions 
must be imposed at the symmetry axes. These symmetry axes are 
defined as the global X and Y axes in the FE mesh; the global 
Z axis is parallel to the punch displacement direction. The geometry 
of the FE model is that of the experimental process shown 
in Figure 1. The tools (punch, die and holder) are considered to be 
perfectly rigid and are modelled by rigid elements.  

The structure is modelled using both 2D and 3D elements 
available in Abaqus. The blank sheet metal was modelled using 
eight-node continuum shell elements in Abaqus (SC8R) with 

reduced integration and one element through the thickness. 
The punch, die and blank holder are all modelled as 3 dimensional 
discrete rigid surfaces using four-node rigid surface elements 
(R3D4). In addition, the geometry has been variable, mesh 
parameters such as element size and mesh density may also be 
varied. This feature is needed to ‘tune’ the model in order to get 
mesh independent converged results.  
 
 
5.2 Boundary conditions 
 

As described in section 5.1 the DDP consist of two steps. 
During the second step, the punch moves at a constant speed 
VP for a travel distance SP with blank holder pressure P still 
applied. The die is fixed while the punch and blank holder are free 
to move in a direction normal to the blank plane. The double 
symmetry of DDP configuration is exploited and only a one-fourth 
of the assembly was modelled with symmetry boundary conditions 
applied at symmetry planes.  
 
 
5.3 Numerical considerations  
 
Mass scaling 

At low punch speeds (and constant speeds) DDP is essentially 
a quasi-static process. Therefore, inertia forces do not play a major 
role and it is possible to speed up the convergence of the 
numerical solution using mass scaling. This approach requires 
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increasing the density of the material artificially in order to increase 
the stable time increment for the numerical integration. This 
procedure is termed “mass scaling”. In the same manner as 
load-factoring this is an attractive method in instances where 
inertia plays a comparatively small part in the structural behaviour. 
As far as, in our case a blank forming analysis is considered, 
where a large proportion of the deformed structure is constrained 
by rigid surfaces and the kinetic energy of the blank itself is a small 
component of the overall energy balance of the problem, the mass 
scaling is applied to the blank only. 

Thus, this is done by multiplying the density of blank material 
by a factor. This factor is chosen so that the solution time is reduced 
considerably all the while keeping the ratio of kinetic energy 
to strain energy of the blank low. A ratio of 0.05 is recommended 
[8] for best performance. Since the contributions of the die, punch 
and holder to inertia forces are negligible (the punch is moving 
at a constant speed) they were all assigned unit point masses. 
We have varied this factor from 500 to 60000 and several 
numerical examples were conducted to adjust this factor, so that 
we obtained converged solution while the ratio of kinetic energy 
to strain energy is kept less than 5% of the strain energy; a value 
of 10000 of the mass scaling have been used. 

 
Contact parameters 

The formulation of contact parameters between rigid surfaces 
(all the DDP tools except the blank) and a deformable body 
(which is the blank) is modelled with surface-to-surface model 
that is less sensitive to master and slave surface designations. 
In this formulation the finite sliding is undergo. However, the 
finite-sliding, surface-to-surface formulation with the path-based 
tracking algorithm do allow for double-sided surfaces used in this 
study. As far as, surface-to surface contact discretization has more 
continuous behaviour upon sliding, contact conditions with finite-
sliding contact tend to converge in less iteration with surface-to 
surface contact discretization. In addition during all the parametric 
simulations, the analytical rigid surfaces are simulated by the 
master surfaces, slave surfaces are attached to deformable blank.  
 
Friction coefficient parameter 

Friction is one of the most important parameters affecting the 
material flow and the required load in forming process [9, 10]. 
FE investigations treating this parameter as a single parameter 
of DDP and drawing forming limit in sheet forming processes, 
are well précised in references [11] and [12]. 

In fact, friction has both positive and negative roles in metal 
forming. There are numerous instances where friction opposes the 
flow of metal in forming processes, and there are also several 
cases where the forming process is made possible by friction. 
A high value of friction between the blank and the matrix causes 
a significant thinning of the blank. On the opposite side by 
removing the lubricant, there appeared signs of damage at the 
contact surfaces materials. 
 
 
5.4 Parametric simulation of the DDP 
 
 

In DDP defects imply that the drawing of a cup has been 
completed but that the finished shape has some undesirable 
features in terms of geometry and/or mechanical properties. 
The defects fall into four main categories: (i) defects due to buckling, 

(such as wrinkling), (ii) defects due to asymmetrical flow (caring) 
(iii) surface defects, and (iv) distorted geometry in the 
unconstrained state (such as thinning). 

The most primary defects that occurs in deep drawing 
operations are the over thinning and wrinkling of sheet metal 
materials. Generally, the thinning is produced in the blank wall 
compressed between the punch and the die; while the wrinkling 
is occurred in the flange of the blank. Those major defects are 
preventable if the deep drawing systems are designed properly. 

The greater the die cavity depth, the more blank material has to 
be pulled down into the die cavity and the greater the risk of 
thinning and wrinkling in the blank. The maximum die cavity depth 
is a balance between the onset of wrinkling and the onset excessive 
thinning or fracture, neither of which is desirable. This balance is 
described with limit drown values commonly fixed by the industrial 
exigency, for example, in the automotive industry 20% of thinning 
in the sheet thickness is the maximum tolerable value. 

In this parametric study, several parameters have been 
considered to be variable. For all the following cases, when ultimate 
thinning riches more than 30% of the initial blank thickness, 
the process is considered as failed. The simulations presented here 
are run with the following considerations: the material properties 
are those of MS material; the coefficient of friction are 0.02 
for the Blank Holder contact, 0.02 for the Blank Die contact, 0.25 
for the Punch Blank contact and then 0.03 for the global contact 
surfaces as follows, the punch speed is of 1.66 mm/s and the 
holder force is maintained at a value of 19.6 kN.  

In order to assess the effect of parameters such as RfD, RfP, RsD, 
RsP, Vb,SP, lD and tb on the DDP, we have adopted a simplified 
notation all the geometric parameters were done as a ratio to the 
final cross section width WD; so that they can be dimensionless. 
The following ratios are then introduced:  
lD= tLD/ WD, sP= SP/WD, rsD = RsD / WD,  
rsP = RsP / WD, rfP = RfP / WD, rfD = RfD / WD.  

With the purpose of accomplishing this task, four parametric 
studies have been considered. In the first parametric study the effect 
of the aspect ratio (lD) and the blank thickness on the limit 
of drawability of the DDP are considered. The second parametric 
study treats the effect of aspect ratio (lD), the punch section radius 
(rsP) and die fillet radius (rfD) on drawability, wrinkling and percent 
thinning of the formed cup. The third parametric study examines 
the effect of the cup aspect ratio (lD), die section radius (rsD) and 
punch fillet radius (rfP) on DDP. The fourth and last study 
is dealing with the effect of the aspect ratio (lD) and punch travel 
distance (sP) on the DDP A total of 136 finite element analyses 
cases have been used to carry out the described parametric study. 
 
Effect of rectangular cup aspect ratio and blank thickness 
on drawability of the DDP 

In this section, we are interested to attempt a correlation that 
describes the limits of drawability between the aspect ratios lD, 
and the blank thickness tb. In fact, to involve the relation between 
the initial blank thickness and the final aspect ratio of the 
rectangular cup; it is important to derive the trend of thickness 
variation along the particular path (the diagonal path highlighted 
with a red dashed line in Figure 4a. In this section study, thickness 
of the blank, tb is varying in the range of 0.8 to 1.6 mm and the 
aspect ratios lD is varying in the range of 1.2 to 1.6. The most 
important geometric parameters (rsD, rfD, rsP, rfP and wD) are 
simultaneously; 0.3, 0.25, 0.1,0.2, 40. Figures 8 to 10 are 
describing the thickness evolution vs. the diagonal distance for the 

5.4.	�Parametric simulation  
of the DDP

two limit aspect ratios. The variation of the thickness profile of the 
formed cup is measured in two ways. The first method is to evaluate 
the maximum thinning value which is expressed as: 
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In this case the minimum is sampled over the diagonal path. 
The second method is to calculate the deviation of the final profile 
from the initial thickness this is expressed as: 
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where N is the number of sampling points along the diagonal 
direction and tk is the thickness at the kth sampling point.  

The x-axis of Figure 11a describes the different initial 
thickness of the blank, and the vertical axes define the values 
of the blank thicknesses after deformation along the diagonal path. 
From this graph, it is shown that the difference between the 
maximum and minimum thicknesses of the deformed blank 
is minimized for low initial thickness of the blank for the same 
geometric shape. The Figure 11b represent the group summery 
statistic table of the results for the ratios lD=1.2. 
 

 
 

Fig. 8. A square rectangular cup with highlighted diagonal path 
 

 
 
Fig. 9. Variation of the blank thickness along the diagonal path 
for various aspect ratios lD and initial blank thickness tb=0.8 
 

Indeed, the dispersion indicator (standard deviation) varies 
from one sample to another depending on the group (the initial 

thickness) otherwise exchange by value of the initial thickness. 
The same work is repeated for all the aspect ratio lD. as it is shown 
by Figure 12.  
 

 
 
Fig. 10. Variation of the blank thickness along the diagonal path 
for various aspect ratios lD and initial blank thickness tb=1.6 
 
a) 

 
b) 

 
 
Fig. 11. a) Variation of the blank thickness along of the deformed 
sheet for ratios lD=1.2 and tb=0.8, 1.2, 1.4, 1.6; b) summary 
of statistics results 
 

Graphs in Figure 12 show that the variation of the thickness 
profile pt and the deviation of the final profile t increases when 
blank thickness tb increases and also when aspect ratio lD increases.  

In the graphs represented by Figure 12, for the spectrum of lD 
and tb the trends of the thinning deviation curves measured by the 
t parameter and those of the thinning variation are quite similar. 

In fact, the results show that the values of the maximum and 
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increasing the density of the material artificially in order to increase 
the stable time increment for the numerical integration. This 
procedure is termed “mass scaling”. In the same manner as 
load-factoring this is an attractive method in instances where 
inertia plays a comparatively small part in the structural behaviour. 
As far as, in our case a blank forming analysis is considered, 
where a large proportion of the deformed structure is constrained 
by rigid surfaces and the kinetic energy of the blank itself is a small 
component of the overall energy balance of the problem, the mass 
scaling is applied to the blank only. 

Thus, this is done by multiplying the density of blank material 
by a factor. This factor is chosen so that the solution time is reduced 
considerably all the while keeping the ratio of kinetic energy 
to strain energy of the blank low. A ratio of 0.05 is recommended 
[8] for best performance. Since the contributions of the die, punch 
and holder to inertia forces are negligible (the punch is moving 
at a constant speed) they were all assigned unit point masses. 
We have varied this factor from 500 to 60000 and several 
numerical examples were conducted to adjust this factor, so that 
we obtained converged solution while the ratio of kinetic energy 
to strain energy is kept less than 5% of the strain energy; a value 
of 10000 of the mass scaling have been used. 

 
Contact parameters 

The formulation of contact parameters between rigid surfaces 
(all the DDP tools except the blank) and a deformable body 
(which is the blank) is modelled with surface-to-surface model 
that is less sensitive to master and slave surface designations. 
In this formulation the finite sliding is undergo. However, the 
finite-sliding, surface-to-surface formulation with the path-based 
tracking algorithm do allow for double-sided surfaces used in this 
study. As far as, surface-to surface contact discretization has more 
continuous behaviour upon sliding, contact conditions with finite-
sliding contact tend to converge in less iteration with surface-to 
surface contact discretization. In addition during all the parametric 
simulations, the analytical rigid surfaces are simulated by the 
master surfaces, slave surfaces are attached to deformable blank.  
 
Friction coefficient parameter 

Friction is one of the most important parameters affecting the 
material flow and the required load in forming process [9, 10]. 
FE investigations treating this parameter as a single parameter 
of DDP and drawing forming limit in sheet forming processes, 
are well précised in references [11] and [12]. 

In fact, friction has both positive and negative roles in metal 
forming. There are numerous instances where friction opposes the 
flow of metal in forming processes, and there are also several 
cases where the forming process is made possible by friction. 
A high value of friction between the blank and the matrix causes 
a significant thinning of the blank. On the opposite side by 
removing the lubricant, there appeared signs of damage at the 
contact surfaces materials. 
 
 
5.4 Parametric simulation of the DDP 
 
 

In DDP defects imply that the drawing of a cup has been 
completed but that the finished shape has some undesirable 
features in terms of geometry and/or mechanical properties. 
The defects fall into four main categories: (i) defects due to buckling, 

(such as wrinkling), (ii) defects due to asymmetrical flow (caring) 
(iii) surface defects, and (iv) distorted geometry in the 
unconstrained state (such as thinning). 

The most primary defects that occurs in deep drawing 
operations are the over thinning and wrinkling of sheet metal 
materials. Generally, the thinning is produced in the blank wall 
compressed between the punch and the die; while the wrinkling 
is occurred in the flange of the blank. Those major defects are 
preventable if the deep drawing systems are designed properly. 

The greater the die cavity depth, the more blank material has to 
be pulled down into the die cavity and the greater the risk of 
thinning and wrinkling in the blank. The maximum die cavity depth 
is a balance between the onset of wrinkling and the onset excessive 
thinning or fracture, neither of which is desirable. This balance is 
described with limit drown values commonly fixed by the industrial 
exigency, for example, in the automotive industry 20% of thinning 
in the sheet thickness is the maximum tolerable value. 

In this parametric study, several parameters have been 
considered to be variable. For all the following cases, when ultimate 
thinning riches more than 30% of the initial blank thickness, 
the process is considered as failed. The simulations presented here 
are run with the following considerations: the material properties 
are those of MS material; the coefficient of friction are 0.02 
for the Blank Holder contact, 0.02 for the Blank Die contact, 0.25 
for the Punch Blank contact and then 0.03 for the global contact 
surfaces as follows, the punch speed is of 1.66 mm/s and the 
holder force is maintained at a value of 19.6 kN.  

In order to assess the effect of parameters such as RfD, RfP, RsD, 
RsP, Vb,SP, lD and tb on the DDP, we have adopted a simplified 
notation all the geometric parameters were done as a ratio to the 
final cross section width WD; so that they can be dimensionless. 
The following ratios are then introduced:  
lD= tLD/ WD, sP= SP/WD, rsD = RsD / WD,  
rsP = RsP / WD, rfP = RfP / WD, rfD = RfD / WD.  

With the purpose of accomplishing this task, four parametric 
studies have been considered. In the first parametric study the effect 
of the aspect ratio (lD) and the blank thickness on the limit 
of drawability of the DDP are considered. The second parametric 
study treats the effect of aspect ratio (lD), the punch section radius 
(rsP) and die fillet radius (rfD) on drawability, wrinkling and percent 
thinning of the formed cup. The third parametric study examines 
the effect of the cup aspect ratio (lD), die section radius (rsD) and 
punch fillet radius (rfP) on DDP. The fourth and last study 
is dealing with the effect of the aspect ratio (lD) and punch travel 
distance (sP) on the DDP A total of 136 finite element analyses 
cases have been used to carry out the described parametric study. 
 
Effect of rectangular cup aspect ratio and blank thickness 
on drawability of the DDP 

In this section, we are interested to attempt a correlation that 
describes the limits of drawability between the aspect ratios lD, 
and the blank thickness tb. In fact, to involve the relation between 
the initial blank thickness and the final aspect ratio of the 
rectangular cup; it is important to derive the trend of thickness 
variation along the particular path (the diagonal path highlighted 
with a red dashed line in Figure 4a. In this section study, thickness 
of the blank, tb is varying in the range of 0.8 to 1.6 mm and the 
aspect ratios lD is varying in the range of 1.2 to 1.6. The most 
important geometric parameters (rsD, rfD, rsP, rfP and wD) are 
simultaneously; 0.3, 0.25, 0.1,0.2, 40. Figures 8 to 10 are 
describing the thickness evolution vs. the diagonal distance for the 

two limit aspect ratios. The variation of the thickness profile of the 
formed cup is measured in two ways. The first method is to evaluate 
the maximum thinning value which is expressed as: 
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In this case the minimum is sampled over the diagonal path. 
The second method is to calculate the deviation of the final profile 
from the initial thickness this is expressed as: 
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where N is the number of sampling points along the diagonal 
direction and tk is the thickness at the kth sampling point.  

The x-axis of Figure 11a describes the different initial 
thickness of the blank, and the vertical axes define the values 
of the blank thicknesses after deformation along the diagonal path. 
From this graph, it is shown that the difference between the 
maximum and minimum thicknesses of the deformed blank 
is minimized for low initial thickness of the blank for the same 
geometric shape. The Figure 11b represent the group summery 
statistic table of the results for the ratios lD=1.2. 
 

 
 

Fig. 8. A square rectangular cup with highlighted diagonal path 
 

 
 
Fig. 9. Variation of the blank thickness along the diagonal path 
for various aspect ratios lD and initial blank thickness tb=0.8 
 

Indeed, the dispersion indicator (standard deviation) varies 
from one sample to another depending on the group (the initial 

thickness) otherwise exchange by value of the initial thickness. 
The same work is repeated for all the aspect ratio lD. as it is shown 
by Figure 12.  
 

 
 
Fig. 10. Variation of the blank thickness along the diagonal path 
for various aspect ratios lD and initial blank thickness tb=1.6 
 
a) 

 
b) 

 
 
Fig. 11. a) Variation of the blank thickness along of the deformed 
sheet for ratios lD=1.2 and tb=0.8, 1.2, 1.4, 1.6; b) summary 
of statistics results 
 

Graphs in Figure 12 show that the variation of the thickness 
profile pt and the deviation of the final profile t increases when 
blank thickness tb increases and also when aspect ratio lD increases.  

In the graphs represented by Figure 12, for the spectrum of lD 
and tb the trends of the thinning deviation curves measured by the 
t parameter and those of the thinning variation are quite similar. 

In fact, the results show that the values of the maximum and 
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minimum of the thickness changes are minimized for smallest 
blank thicknesses and they are largest for highest aspect ratios lD.  

From Figure 12, it is established that the rate thinning defined 
as the aspect of the maximum thinning to the blank thickness 
tb is depending on the aspect ratio lD. It seems that as much as the 
aspect ratio lD is low, the maximum thinning rate is upper. Thus, 
the rate of maximum thinning is slowed down by the increasing 
of the final cup aspect ratio lD. Results show that, varying the 
aspect ratio lD from 1.2 to 1.6 has reduced the thinning of the 
blank thickness by 30% for the same blank thickness of 1.6 mm. 

 

 
 
Fig. 12. Thinning deviation of the thickness distribution along 
diagonal path versus the blank thickness tb and aspect ratio lD 
 
Effect of die fillet and punch section radii on drawability 
of the DDP 

In this section we are dealing with the study of the geometric 
parameters such as the punch section radius (rsP), the die fillet 
radius (rfD), and their interaction with the aspect ratio lD, on the 
drawability of the DDP. In fact, several finite element analyses were 
performed, 36 FEA experiments are done with lD, which rises 
between 1 to 1.5, rsP is varying between 0.2 to 0.8 and rfD between 
0.4 to 0.8. For the entire calculations in this section the normalized 
punch stroke sP is fixed to 0.75, the blank thickness tb is fixed to 1.2.  
 

 
 
Fig. 13. Variation of the thinning along the diagonal path for 
various aspect ratios rsP and rfD 
 

From Figure 13, it seems that when rsP takes minim values; 
the growth of maximum thinning is well emphasized. By the way, 
in Figure 13 it is noticed that as much as rfD and rsP are declines; 

the maximum thinning trends to decrease. Figure 14 represents 
the thinning deviation along the diagonal path, for various aspect 
ratios lD and punch section radius (rsP).We note that the trend 
of thinning deviation is closely similar to the trend of maximum 
thinning vs rsP. In fact, the increase of the final cup aspect ratio 
lD induces decrease of the maximum thinning independently from 
(rsP). Figure 15, show that above rsP =0.4, the increase of lD ratio 
leads almost to increase of the maximum thinning. It is thus 
noticed that we have to avoid high rfD parameters combined with 
high rsP parameters, especially with thick sheet blanks, because 
it leads to greatest maximum thinning. 
 

 
 
Fig. 14. Variation of the thinning deviation along the diagonal 
path for various rsP and lD 
 

 
 
Fig. 15. Variation of the maximum thinning along the diagonal 
path for various rsP, rfD and lD 
 
Effect of punch fillet and die section radii on drawability 
of the DDP 

In some literature review [13], [14] and [15], the effect of the 
punch fillet radius was considered as effective parameter which 
can influence the drawability of the DDP. Nevertheless, interaction 
between punch fillet radius (rfP) and die section radius (rsD) has 
not been well discussed. In this paragraph we will elucidate 
the effect of interaction between those parameters. We will focus 
on the impact of this interaction on DDP and highlight the change 
in the behaviour of the maximum thinning according to variation 
of the parameters; aspect ratio lD and tb.  

A series of 64 FEA experiments is done by varying the blank 
thickness in the range from 1.2 to 1.6 mm, the aspect ratio lD from 

1.2 to 1.6, the die section radius from 0.3 to 0.8 and the punch 
fillet radius from 0.1 to 0.22, the punch stroke sP was kept constant 
and equals to 0.75. 
 

 
 
Fig. 16. Variation of the thickness along the diagonal path for 
various rsD for lD=1.6 and tb=1.4 
 

 
 
Fig. 17. Variation of the thinning deviation along the diagonal 
path for various rsD, and rfP. For lD=1.4 and tb=1.6 
 

 
 
Fig. 18. Variation of the maximum thinning % along the diagonal 
path for various rsD, and rfP. For lD=1.4 and tb=1.6 
 

According to Figure 16 it is observed that, the maximum 
thinning for the different rsD ratios is located at the same zone which 
corresponds to the corner of the cup. Figure 17 introduces the 

thinning deviation versus rsD for different values of rfP. The thinning 
profile is generally growing, according to increasing of the rfP for 
the same aspect ratios lD and rsD. Results confirm that the lower rfP 
is, the more severe maximum thinning is. In fact, it is observed that 
interaction between rfP and rsD is well emphasized for a relatively 
thick blank (tb=1.6 mm). In addition, values of rsD larger than 0.6 
improve the critical thinning, when the punch fillet radius is smaller 
than 0.1. This result is very significant; in fact a high value of the 
fillet punch radius > 0.1, combined with section die radius < 0.6, 
leads to a minimum thinning Figures 18, 19 and 20. 

Figure 20 shows the large amount of thinning localized in the 
critical zone of the diagonal path when we move from tb=1.2 
to tb=1.6. 
 

 
 
Fig. 19. Variation of the maximum thinning % along the diagonal 
path for various rsD, and rfP for lD=1.6 and tb=1.6 
 

 
 
Fig. 20. Variation of the thickness along the diagonal path for 
various rfP for lD=1.4 and tb=1.4; 1.2 
 

The effect of interaction between rsD, rfP, lD and tb is presented 
by Figures 21 to 23. A significant sensitivity to the interaction 
between the rsD ,rfP, with lD and tb, is noticed on the thinning profile.  

We kept the initial blank thickness constant and equal to 
tb=1.6 mm, then we have varied the final cup aspect ratio lD from 
1.2 to lD=1.6. According to Figure 21, the thinning deviation for 
the different values of rsD has been distinguished with a significant 
reduction. Figure 22 confirm that when the final cup aspect ratio 
lD increases, the maximum thinning with the same rsD, rfP, 
is slowed down. The growth of rfP, parameter is accompanied 
with the decrease of maximum thinning, but this maximum 
thinning has to grow for increasing rsD values. 

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


73

Analysis and modelling

Parametric Finite Element Analysis for a square cup deep drawing process

minimum of the thickness changes are minimized for smallest 
blank thicknesses and they are largest for highest aspect ratios lD.  

From Figure 12, it is established that the rate thinning defined 
as the aspect of the maximum thinning to the blank thickness 
tb is depending on the aspect ratio lD. It seems that as much as the 
aspect ratio lD is low, the maximum thinning rate is upper. Thus, 
the rate of maximum thinning is slowed down by the increasing 
of the final cup aspect ratio lD. Results show that, varying the 
aspect ratio lD from 1.2 to 1.6 has reduced the thinning of the 
blank thickness by 30% for the same blank thickness of 1.6 mm. 

 

 
 
Fig. 12. Thinning deviation of the thickness distribution along 
diagonal path versus the blank thickness tb and aspect ratio lD 
 
Effect of die fillet and punch section radii on drawability 
of the DDP 

In this section we are dealing with the study of the geometric 
parameters such as the punch section radius (rsP), the die fillet 
radius (rfD), and their interaction with the aspect ratio lD, on the 
drawability of the DDP. In fact, several finite element analyses were 
performed, 36 FEA experiments are done with lD, which rises 
between 1 to 1.5, rsP is varying between 0.2 to 0.8 and rfD between 
0.4 to 0.8. For the entire calculations in this section the normalized 
punch stroke sP is fixed to 0.75, the blank thickness tb is fixed to 1.2.  
 

 
 
Fig. 13. Variation of the thinning along the diagonal path for 
various aspect ratios rsP and rfD 
 

From Figure 13, it seems that when rsP takes minim values; 
the growth of maximum thinning is well emphasized. By the way, 
in Figure 13 it is noticed that as much as rfD and rsP are declines; 

the maximum thinning trends to decrease. Figure 14 represents 
the thinning deviation along the diagonal path, for various aspect 
ratios lD and punch section radius (rsP).We note that the trend 
of thinning deviation is closely similar to the trend of maximum 
thinning vs rsP. In fact, the increase of the final cup aspect ratio 
lD induces decrease of the maximum thinning independently from 
(rsP). Figure 15, show that above rsP =0.4, the increase of lD ratio 
leads almost to increase of the maximum thinning. It is thus 
noticed that we have to avoid high rfD parameters combined with 
high rsP parameters, especially with thick sheet blanks, because 
it leads to greatest maximum thinning. 
 

 
 
Fig. 14. Variation of the thinning deviation along the diagonal 
path for various rsP and lD 
 

 
 
Fig. 15. Variation of the maximum thinning along the diagonal 
path for various rsP, rfD and lD 
 
Effect of punch fillet and die section radii on drawability 
of the DDP 

In some literature review [13], [14] and [15], the effect of the 
punch fillet radius was considered as effective parameter which 
can influence the drawability of the DDP. Nevertheless, interaction 
between punch fillet radius (rfP) and die section radius (rsD) has 
not been well discussed. In this paragraph we will elucidate 
the effect of interaction between those parameters. We will focus 
on the impact of this interaction on DDP and highlight the change 
in the behaviour of the maximum thinning according to variation 
of the parameters; aspect ratio lD and tb.  

A series of 64 FEA experiments is done by varying the blank 
thickness in the range from 1.2 to 1.6 mm, the aspect ratio lD from 

1.2 to 1.6, the die section radius from 0.3 to 0.8 and the punch 
fillet radius from 0.1 to 0.22, the punch stroke sP was kept constant 
and equals to 0.75. 
 

 
 
Fig. 16. Variation of the thickness along the diagonal path for 
various rsD for lD=1.6 and tb=1.4 
 

 
 
Fig. 17. Variation of the thinning deviation along the diagonal 
path for various rsD, and rfP. For lD=1.4 and tb=1.6 
 

 
 
Fig. 18. Variation of the maximum thinning % along the diagonal 
path for various rsD, and rfP. For lD=1.4 and tb=1.6 
 

According to Figure 16 it is observed that, the maximum 
thinning for the different rsD ratios is located at the same zone which 
corresponds to the corner of the cup. Figure 17 introduces the 

thinning deviation versus rsD for different values of rfP. The thinning 
profile is generally growing, according to increasing of the rfP for 
the same aspect ratios lD and rsD. Results confirm that the lower rfP 
is, the more severe maximum thinning is. In fact, it is observed that 
interaction between rfP and rsD is well emphasized for a relatively 
thick blank (tb=1.6 mm). In addition, values of rsD larger than 0.6 
improve the critical thinning, when the punch fillet radius is smaller 
than 0.1. This result is very significant; in fact a high value of the 
fillet punch radius > 0.1, combined with section die radius < 0.6, 
leads to a minimum thinning Figures 18, 19 and 20. 

Figure 20 shows the large amount of thinning localized in the 
critical zone of the diagonal path when we move from tb=1.2 
to tb=1.6. 
 

 
 
Fig. 19. Variation of the maximum thinning % along the diagonal 
path for various rsD, and rfP for lD=1.6 and tb=1.6 
 

 
 
Fig. 20. Variation of the thickness along the diagonal path for 
various rfP for lD=1.4 and tb=1.4; 1.2 
 

The effect of interaction between rsD, rfP, lD and tb is presented 
by Figures 21 to 23. A significant sensitivity to the interaction 
between the rsD ,rfP, with lD and tb, is noticed on the thinning profile.  

We kept the initial blank thickness constant and equal to 
tb=1.6 mm, then we have varied the final cup aspect ratio lD from 
1.2 to lD=1.6. According to Figure 21, the thinning deviation for 
the different values of rsD has been distinguished with a significant 
reduction. Figure 22 confirm that when the final cup aspect ratio 
lD increases, the maximum thinning with the same rsD, rfP, 
is slowed down. The growth of rfP, parameter is accompanied 
with the decrease of maximum thinning, but this maximum 
thinning has to grow for increasing rsD values. 
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In the cases with thin initial blank tb=1.2, it appears that for 
the entire studied cases from Figures 20 and 21, the maximum 
thinning profile tends to take a rapid rate reduction within the 
increase of rsD parameter. This fact is particularly noted for rsD 
above 0.6. 
 

 
 
Fig. 21. Variation of the thinning deviation along the diagonal path 
for various rsD, and rfP with lD=1.4 and tb=1.2 
 

 
 
Fig. 22. Variation of the maximum thinning % along the diagonal 
path for various rsD, and rfP for lD=1.4 and tb=1.2 
 

 
 
Fig. 23. Variation of the thinning deviation along the diagonal path 
for various rsD, and rfP for lD=1.6 and tb=1.2 

From Figures 22 and 23, it appears that for larger aspect ratio 
lD, the thinning deviation and the maximum thinning are being 
decreasing. We note at least, that above rsD =0.6, even though the 
maximum thinning is slowed down, the increase of rfP ratio leads 
to a small growth of the maximum thinning instead of decreasing.  
 
Sensitivity to the Punch travel 

In order to take advantage of this parametric FEA study, the 
interaction between the lD aspect ratio and the punch travel sP ratio 
are emphasized in Figures 24 to 28. Four values of parameter sP are 
experimented at constant value of lD; then the analysis is repeated 
for a different value of lD. It appears that for a square cup the 
growth of the sP doesn’t lead to the increase of the maximum 
thinning. In fact, as it is mentioned by Figure 28, beyond sP=0.6 
the increase of the punch travel slow down the maximum thinning 
of the square cup. Conversely, under 0.6 of the sP value, the growth 
of the ratio sP leads to a rapid increase of the maximum thinning. 
This paradoxes result can be attributed to the fact that a friction 
of the sheet between the blank holder and the die is almost 
important so that a higher thickening is observed for the flange 
of any rectangular cup characterized with a sP above 60% of the 
blank cross section width. Therefore, when the punch travel 
increases, a uniform distribution of the thickness can be transferred 
from the thickening amount of material. The critical thinning 
is being slowed at the end of the process.  
 

 
 
Fig. 24. Variation of the thinning along the diagonal path for 
various aspect sP and lD=1 
 

 
 
Fig. 25. Variation of the thinning along the diagonal path for 
various aspect sP and lD=1.5 

Figures 26 to 28 show that maximum thinning increased with 
sP for cups with lD larger than unity. Beyond a punch travel equals 
to the blank width of the cross section, some wrinkling can be 
observed at the vicinity of the corner section as highlighted 
by Figure 27, this fact is considered as major failure. Figure 28, 
illustrate two important facts; the larger the aspect ratio lD is, the 
smaller the maximum thinning for the same sP. Indeed, as well as 
the aspect ratio lD is higher, the maximum thinning trends to grow 
linearly.  

 

 
 
Fig. 26. Variation of the thinning along the diagonal path for 
various aspect sP and lD =2 
 

 
 
Fig. 27. Plastic deformation out in the thickness direction for the 
following cases sP=1 and aspect ratio, lD =1.5 and 2 respectively 
 

 
 
Fig. 28. Variation of the thinning versus the sP for various aspect 
ratio lD 

5.5. Discussion 
 

FE analysis results show that localized deformation and 
wrinkling occur along the major axis of diagonal DD when 
interaction between some of the geometric parameters is hold 
as detailed in section 5. This is attributed to the non-uniform 
contact in the cross-section between the mid-blank and the punch 
during the forming process. With compared results between the 
various couple of geometric parameters (radius of the punch and 
the die), it was confirmed that for a selected value of the final 
geometry of the blank (lD), we can associate particular values 
of punch section and fillet radius to avoid wrinkling and tearing 
of the blank. In fact, if the choice of the following parameters 
rsP=RsP / WD, rfP=RfP / WD, rfD=RfD / WD is not compatible 
different an excessive thinning can occurred and lead to a tearing. 
As it is known, tearing in the drawing mode occurs when the tensile 
flow stress at a local neck exceeds the ultimate stress. In such 
location the strain takes also its ultimate value and then it could 
be considered as a forming limit. This important consideration for 
general rectangular cross sections, has been incorporated by FE 
DDP forming sequence, in which we maintain a punch speed 
constant for the entire cases and we change the contact section 
between punch, blank and die with a sensitivity analysis for 
rectangular cups to the various combination of fillet and sections 
radius which in turn minimizes the maximum thinning.  

In section 5, a limit of drawability according to aspect ratio 
lD blank thickness tb is considered by controlling the material flow 
and avoiding necking at the bottom corners of rectangular cup. 
If rsD and rfP, are too small, sheet material does stick to the die and 
cannot flow easily to the die cavity. This could be associated to a 
failure of the process; (wrinkling and excessive amount of thinning).  

As it was indicated, for larger aspect ratios lD, smaller initial 
sheet blank thicknesses, the maximum thinning are being decreasing. 
But, we note that above rsD=0.6, even though the maximum 
thinning is slowed down with conditions above, the increase of rfP 
ratio leads to a small growth of the maximum thinning instead of 
decreasing. Indeed, great value of the rfP ratio above 0.7 can lead 
to the development of local wrinkling phenomenon.  
 
 

6. Optimization FEM study 
 

Simulations of forming processes are increasingly used 
by large and small companies in the early stage of a product 
design. These simulations have become indispensable for the 
development of products and the automation of this process itself.  

Optimization of parameters such as die radius, blank holder 
force, friction coefficient, etc., can be accomplished based on their 
degree of importance on the sheet metal forming. In this investiga-
tion, a statistical approach called optimization mon-objective method 
has been applied to design the process providing the best geometric 
parameters which lead to the selected minimum failure criterion. 
 
 
6.1 Summery of some parametric FE results 
and discussion 
 

The aim of this section is to outline the most important results 
presented in section 5, in order to summarize the principle 
geometric parameters that were the mostly affecting the drawability 
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In the cases with thin initial blank tb=1.2, it appears that for 
the entire studied cases from Figures 20 and 21, the maximum 
thinning profile tends to take a rapid rate reduction within the 
increase of rsD parameter. This fact is particularly noted for rsD 
above 0.6. 
 

 
 
Fig. 21. Variation of the thinning deviation along the diagonal path 
for various rsD, and rfP with lD=1.4 and tb=1.2 
 

 
 
Fig. 22. Variation of the maximum thinning % along the diagonal 
path for various rsD, and rfP for lD=1.4 and tb=1.2 
 

 
 
Fig. 23. Variation of the thinning deviation along the diagonal path 
for various rsD, and rfP for lD=1.6 and tb=1.2 

From Figures 22 and 23, it appears that for larger aspect ratio 
lD, the thinning deviation and the maximum thinning are being 
decreasing. We note at least, that above rsD =0.6, even though the 
maximum thinning is slowed down, the increase of rfP ratio leads 
to a small growth of the maximum thinning instead of decreasing.  
 
Sensitivity to the Punch travel 

In order to take advantage of this parametric FEA study, the 
interaction between the lD aspect ratio and the punch travel sP ratio 
are emphasized in Figures 24 to 28. Four values of parameter sP are 
experimented at constant value of lD; then the analysis is repeated 
for a different value of lD. It appears that for a square cup the 
growth of the sP doesn’t lead to the increase of the maximum 
thinning. In fact, as it is mentioned by Figure 28, beyond sP=0.6 
the increase of the punch travel slow down the maximum thinning 
of the square cup. Conversely, under 0.6 of the sP value, the growth 
of the ratio sP leads to a rapid increase of the maximum thinning. 
This paradoxes result can be attributed to the fact that a friction 
of the sheet between the blank holder and the die is almost 
important so that a higher thickening is observed for the flange 
of any rectangular cup characterized with a sP above 60% of the 
blank cross section width. Therefore, when the punch travel 
increases, a uniform distribution of the thickness can be transferred 
from the thickening amount of material. The critical thinning 
is being slowed at the end of the process.  
 

 
 
Fig. 24. Variation of the thinning along the diagonal path for 
various aspect sP and lD=1 
 

 
 
Fig. 25. Variation of the thinning along the diagonal path for 
various aspect sP and lD=1.5 

Figures 26 to 28 show that maximum thinning increased with 
sP for cups with lD larger than unity. Beyond a punch travel equals 
to the blank width of the cross section, some wrinkling can be 
observed at the vicinity of the corner section as highlighted 
by Figure 27, this fact is considered as major failure. Figure 28, 
illustrate two important facts; the larger the aspect ratio lD is, the 
smaller the maximum thinning for the same sP. Indeed, as well as 
the aspect ratio lD is higher, the maximum thinning trends to grow 
linearly.  

 

 
 
Fig. 26. Variation of the thinning along the diagonal path for 
various aspect sP and lD =2 
 

 
 
Fig. 27. Plastic deformation out in the thickness direction for the 
following cases sP=1 and aspect ratio, lD =1.5 and 2 respectively 
 

 
 
Fig. 28. Variation of the thinning versus the sP for various aspect 
ratio lD 

5.5. Discussion 
 

FE analysis results show that localized deformation and 
wrinkling occur along the major axis of diagonal DD when 
interaction between some of the geometric parameters is hold 
as detailed in section 5. This is attributed to the non-uniform 
contact in the cross-section between the mid-blank and the punch 
during the forming process. With compared results between the 
various couple of geometric parameters (radius of the punch and 
the die), it was confirmed that for a selected value of the final 
geometry of the blank (lD), we can associate particular values 
of punch section and fillet radius to avoid wrinkling and tearing 
of the blank. In fact, if the choice of the following parameters 
rsP=RsP / WD, rfP=RfP / WD, rfD=RfD / WD is not compatible 
different an excessive thinning can occurred and lead to a tearing. 
As it is known, tearing in the drawing mode occurs when the tensile 
flow stress at a local neck exceeds the ultimate stress. In such 
location the strain takes also its ultimate value and then it could 
be considered as a forming limit. This important consideration for 
general rectangular cross sections, has been incorporated by FE 
DDP forming sequence, in which we maintain a punch speed 
constant for the entire cases and we change the contact section 
between punch, blank and die with a sensitivity analysis for 
rectangular cups to the various combination of fillet and sections 
radius which in turn minimizes the maximum thinning.  

In section 5, a limit of drawability according to aspect ratio 
lD blank thickness tb is considered by controlling the material flow 
and avoiding necking at the bottom corners of rectangular cup. 
If rsD and rfP, are too small, sheet material does stick to the die and 
cannot flow easily to the die cavity. This could be associated to a 
failure of the process; (wrinkling and excessive amount of thinning).  

As it was indicated, for larger aspect ratios lD, smaller initial 
sheet blank thicknesses, the maximum thinning are being decreasing. 
But, we note that above rsD=0.6, even though the maximum 
thinning is slowed down with conditions above, the increase of rfP 
ratio leads to a small growth of the maximum thinning instead of 
decreasing. Indeed, great value of the rfP ratio above 0.7 can lead 
to the development of local wrinkling phenomenon.  
 
 

6. Optimization FEM study 
 

Simulations of forming processes are increasingly used 
by large and small companies in the early stage of a product 
design. These simulations have become indispensable for the 
development of products and the automation of this process itself.  

Optimization of parameters such as die radius, blank holder 
force, friction coefficient, etc., can be accomplished based on their 
degree of importance on the sheet metal forming. In this investiga-
tion, a statistical approach called optimization mon-objective method 
has been applied to design the process providing the best geometric 
parameters which lead to the selected minimum failure criterion. 
 
 
6.1 Summery of some parametric FE results 
and discussion 
 

The aim of this section is to outline the most important results 
presented in section 5, in order to summarize the principle 
geometric parameters that were the mostly affecting the drawability 

6.1.	�Summery of some parametric 
FE results and discussion

5.5.	�Discussion
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of the final product. In fact, after studying the effect of different 
geometric parameters (rsP, rfD, rfP, rsD, lD, sP and tb) on the forming 
process and more specifically on the thinning phenomenon and 
the thickness distribution along the critical diagonal path as 
mentioned by Figure 8a the following conclusions were underlined:  

within a fixed value of the final geometry of the deep drawn 
rectangular cup (wD, lD), it is possible to associate particular 
values of section and fillet radius of the punch rsP to avoid 
wrinkling and tearing of the blank; 
if rsD and rfP are too small, the material of the sheet sticks 
to the die and cannot flow easily into the cavity of the die 
which leads to the possible existence of wrinkles and excessive 
thinning, leading to the failure of the forming process; 
for large values of lD, and low values of initial blank thickness
tb, the maximum thinning decreases. But beyond rsD=0.6, and 
with the increase of the rfP it is noted that we have an increase 
of the maximum thinning. In fact, within a ratio rfP greater than 
0.7, local development of wrinkling phenomenon is developed;  
increasing of rsD usually causes the decrease of maximum 
thinning, but a low value of punch fillet radius rfP associated 
with a high value of blank thickness tb leads to the thinning 
increase, so that local wrinkles can appear on the blank sheet; 
increase of punch stroke sP for rectangular initial blank sheet 
causes the existence of thinning. For values of punch stroke 
above the section width of the blank, some wrinkles may 
appear at the corner of the final geometry of the sheet metal. 

 
 
6.2 Statistical analysis results of the FE model 
 
 

The FE numerical simulation of forming process such 
as drawing process can provide a large amount of final drown 
configurations based on multiple combinations of the different 
variable parameters of the model. To optimize the model behaviour 
and also to save cost of the big amount of time calculation, it is 
almost versatile to hold up with statistical techniques. In fact, 
statistical computing is essential when seeking optimized solution 
to reduce costs and manufacturing time. This kind of calculation 
is actually done using the well known statistical Matlab tool box. 

The statistical study is based on the calculation of certain 
statistical parameters such as: (mean, variance, standard deviation, 
median, correlation.) and summaries results with standard graphics 
(histogram, box plot, chart points ...). 

Indeed, the interest of statistical representations lies in the fact 
of presenting the influence of several variables in a well extended 
spectrum of values; against a limited one as in it was described 
in the parametric study for described in the previous section. 
 
 
6.3 Statistics problem 
 

The graphs of variations in thickness and thinning rates 
presented in the previous section 5, gives a general idea on the 
deep drawing model behaviour within variation of  various 
parameters. Indeed, the interpretations were based on the decrease 
or increase of the thickness and rate of thinning of the blank 
without calculating the limit deviations of such variations. Using 
mathematical tools such statistical appropriate functions, we have 
interpreted statistically numerical results defined in the section 5. 
The statistical study is based on the calculation of certain 

statistical parameters such as: the mean, variance, standard 
deviation, and dispersion. In fact, the interest of statistical 
representations lies on the fact that the lecture and interpretation 
of those results according to statistical variables give a best 
meaning and enhance enlightenment. 
 
Cases study of the forming problem 

The function chosen to perform the statistical study is called 
"vartestn" via to the statistical Matlab toolbox. It allows the 
calculation of certain statistical parameters, comparison of variance 
of multiple samples using Bartlett's test with a graphical 
representation. 

The synthax parameters are as follow, vartestn (X), vartestn 
(X, group), P = vartestn (...) are defined such as: 

vartestn (X): using the Bartlett test to check the equal variance 
for the columns of the matrix X. Indeed, this is a test of the 
null hypothesis H0 that postulate that the columns of the 
matrix X are of a normal distribution with the same variance, 
against the alternative hypothesis Ha with columns of the 
matrix X of even distribution which have different variances. 
The result is displayed in graphical form with a table that 
contains the values of statistical parameters; 
vartestn (X, group) requires a vector argument X and a group 
which can be variable, a vector row of character with one row 
for each element of the matrix X. The values of the matrix 
X are in the same group. This function tests the homogeneity 
of variance in each group; 
P = vartestn (...) returns the p-value, i.e. the probability 
of observing the given result when the null hypothesis 
of homogeneity of variances is true. In cases where this value 
is very small, there is a doubt on the validity of this hypothesis. 

 
Effect of the blank geometric shape and thickness tb on the 
forming process  

In the following example we set lD =1.2 mm and it has 
changed the value of the initial thickness of the blank tb in the 
rage of (0.8, 1.2, 1.4, 1.6). Taking into account all these data, 
we obtain the results shown by Figures 29a and b. 

The graphic representation illustrated by Figure 29b consists 
on a schematic rectangular representation called “box plot”. This 
representation is one way to approach the statistics summery 
concepts. In fact, it can summarize data in a very visual outcome 
see Figure 29 and easily compare various statistical variables. 
This representation is located in a two landmark axes; the samples 
group, axis and the axis containing all values of the samples. For 
each group, a “box plot” which presents some statistical 
parameters such as:  

the middle – it divides the data into two equal sets; 
quartile – the quartiles of statistical series are the three values 
Q1, Q2 and Q3 of character who share the population into four 
parts of the same size;  
the inter-quartile range – the difference between the upper and 
lower quartiles (Q3 - Q1) and also indicates the dispersion 
of a dataset; 
group – group of diffrent tb variables; 
count – number of values in the vector tb: (thickness values 
along the diagonal path), this number is also the length of the 
vector thickness tb; 

STd – standard deviation: N
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 mean – mean value of each group that is defined with the 
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Variances are considered unequal if T> X²( ,k-1)  with X²( ,k-1) 
is the biggest critical distribution of Chi square ( =significant 
threshold, k-1: degree of freedom, and k is the number 
of samples). 

 P-value – is related to  (for great values of P, the hypothesis 
H0 is true, otherwise this hypothesis is false). 

 
a) 

 
b) 

 
 
Fig. 29. a) Thickness variation of the blank with lD=1.2 and tb=0.8; 
1.2; 1.4 and 1.6 mm; b) summary table thickness variation of the 
blank with lD =1.2 and tb=0.8; 1.2; 1.4 and 1.6 mm 
 

In Figure 29a, the x-axis which represents the different groups, 
defines the initial blank thickness tb, and the y-axis values 
represent the different thickness ranges of the blank along the 
diagonal path during the forming process. From this graph, we see 
that the difference between the maximum and minimum thickness 
of the blank at the end of the process along the diagonal path 
is almost obtained with law thicknesses of the blank. Indeed, for 
tb=0.8 mm, we notice that the stamped sheet metal has undergone 
less thinning much lower than it is for the other tb cases. From 
Figure 29b we notice that the p-value is equal to 0, which is lower 

than the risk of error  (0.05), this fact confirms that the 
hypothesis H0 is well justified. Certainly, the indicator of dispersion 
(standard deviation) varies from one sample to another depending 
on the group, so according to the value of the initial thickness 
of the blank tb. Therefore, the samples presented in Figure 29b 
haven’t the same variance. It is concluded that for rectangular 
final geometry of the blank with lD > 1, and with initial law 
thickness tb, there is important thinning of the deformed blank.  
 
Effect of the section radius of the punch rsP parameter on the 
blank thinning rate 

In order to visualize the influence of rsP parameter on the 
thickness distribution of a blank, we have considered different 
values rsP with for the tb varying in the range from 0.2 to 0.8 and 
an aspect ratio equals to 1.2. Results are then obtained with 
Matlab as shown it in Figures 30a and b. 
 
a) 

 
 

b) 

 
 
Fig. 30. a) Thickness variation of the blank with lD=1, tb=1.2 and 
rsP=0.2, 0.4, 0.6 and 0.8; b) summary table for the same 
conditions as in Figure 30a 
 

The results presented in Figure 30a show that the 4 samples of 
the parameter rsP have almost the same inter-quartile; we can say 
that they are compatible for a certain range of thickness. We have 
noticed from the value p-value (Figure 30b) that also the same 
samples have the same variances. We also note from these figures 
that as far as the parameter rsP decreases the thinning of the final 
blank sheet increases. In conclusion, the thinning rate is high for 
low values of rsP in the case of a square plate and initial thickness 
tb=1.2 mm. 
 
Effect of the fillet radius of the die rfD parameter on the blank 
thinning rate 

In this example, we will study the influence of the rfD variation 
on the thinning rate of the blank for a square initial sheet blank with 
tb=1.2 mm. In this case rsp=0.4, lD=1 and tb=1.2 mm, rfD is varying 
from 0.4 to 0.8. We obtained the following results (Figure 31). 
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of the final product. In fact, after studying the effect of different 
geometric parameters (rsP, rfD, rfP, rsD, lD, sP and tb) on the forming 
process and more specifically on the thinning phenomenon and 
the thickness distribution along the critical diagonal path as 
mentioned by Figure 8a the following conclusions were underlined:  

within a fixed value of the final geometry of the deep drawn 
rectangular cup (wD, lD), it is possible to associate particular 
values of section and fillet radius of the punch rsP to avoid 
wrinkling and tearing of the blank; 
if rsD and rfP are too small, the material of the sheet sticks 
to the die and cannot flow easily into the cavity of the die 
which leads to the possible existence of wrinkles and excessive 
thinning, leading to the failure of the forming process; 
for large values of lD, and low values of initial blank thickness
tb, the maximum thinning decreases. But beyond rsD=0.6, and 
with the increase of the rfP it is noted that we have an increase 
of the maximum thinning. In fact, within a ratio rfP greater than 
0.7, local development of wrinkling phenomenon is developed;  
increasing of rsD usually causes the decrease of maximum 
thinning, but a low value of punch fillet radius rfP associated 
with a high value of blank thickness tb leads to the thinning 
increase, so that local wrinkles can appear on the blank sheet; 
increase of punch stroke sP for rectangular initial blank sheet 
causes the existence of thinning. For values of punch stroke 
above the section width of the blank, some wrinkles may 
appear at the corner of the final geometry of the sheet metal. 

 
 
6.2 Statistical analysis results of the FE model 
 
 

The FE numerical simulation of forming process such 
as drawing process can provide a large amount of final drown 
configurations based on multiple combinations of the different 
variable parameters of the model. To optimize the model behaviour 
and also to save cost of the big amount of time calculation, it is 
almost versatile to hold up with statistical techniques. In fact, 
statistical computing is essential when seeking optimized solution 
to reduce costs and manufacturing time. This kind of calculation 
is actually done using the well known statistical Matlab tool box. 

The statistical study is based on the calculation of certain 
statistical parameters such as: (mean, variance, standard deviation, 
median, correlation.) and summaries results with standard graphics 
(histogram, box plot, chart points ...). 

Indeed, the interest of statistical representations lies in the fact 
of presenting the influence of several variables in a well extended 
spectrum of values; against a limited one as in it was described 
in the parametric study for described in the previous section. 
 
 
6.3 Statistics problem 
 

The graphs of variations in thickness and thinning rates 
presented in the previous section 5, gives a general idea on the 
deep drawing model behaviour within variation of  various 
parameters. Indeed, the interpretations were based on the decrease 
or increase of the thickness and rate of thinning of the blank 
without calculating the limit deviations of such variations. Using 
mathematical tools such statistical appropriate functions, we have 
interpreted statistically numerical results defined in the section 5. 
The statistical study is based on the calculation of certain 

statistical parameters such as: the mean, variance, standard 
deviation, and dispersion. In fact, the interest of statistical 
representations lies on the fact that the lecture and interpretation 
of those results according to statistical variables give a best 
meaning and enhance enlightenment. 
 
Cases study of the forming problem 

The function chosen to perform the statistical study is called 
"vartestn" via to the statistical Matlab toolbox. It allows the 
calculation of certain statistical parameters, comparison of variance 
of multiple samples using Bartlett's test with a graphical 
representation. 

The synthax parameters are as follow, vartestn (X), vartestn 
(X, group), P = vartestn (...) are defined such as: 

vartestn (X): using the Bartlett test to check the equal variance 
for the columns of the matrix X. Indeed, this is a test of the 
null hypothesis H0 that postulate that the columns of the 
matrix X are of a normal distribution with the same variance, 
against the alternative hypothesis Ha with columns of the 
matrix X of even distribution which have different variances. 
The result is displayed in graphical form with a table that 
contains the values of statistical parameters; 
vartestn (X, group) requires a vector argument X and a group 
which can be variable, a vector row of character with one row 
for each element of the matrix X. The values of the matrix 
X are in the same group. This function tests the homogeneity 
of variance in each group; 
P = vartestn (...) returns the p-value, i.e. the probability 
of observing the given result when the null hypothesis 
of homogeneity of variances is true. In cases where this value 
is very small, there is a doubt on the validity of this hypothesis. 

 
Effect of the blank geometric shape and thickness tb on the 
forming process  

In the following example we set lD =1.2 mm and it has 
changed the value of the initial thickness of the blank tb in the 
rage of (0.8, 1.2, 1.4, 1.6). Taking into account all these data, 
we obtain the results shown by Figures 29a and b. 

The graphic representation illustrated by Figure 29b consists 
on a schematic rectangular representation called “box plot”. This 
representation is one way to approach the statistics summery 
concepts. In fact, it can summarize data in a very visual outcome 
see Figure 29 and easily compare various statistical variables. 
This representation is located in a two landmark axes; the samples 
group, axis and the axis containing all values of the samples. For 
each group, a “box plot” which presents some statistical 
parameters such as:  

the middle – it divides the data into two equal sets; 
quartile – the quartiles of statistical series are the three values 
Q1, Q2 and Q3 of character who share the population into four 
parts of the same size;  
the inter-quartile range – the difference between the upper and 
lower quartiles (Q3 - Q1) and also indicates the dispersion 
of a dataset; 
group – group of diffrent tb variables; 
count – number of values in the vector tb: (thickness values 
along the diagonal path), this number is also the length of the 
vector thickness tb; 

STd – standard deviation: N

i N
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 mean – mean value of each group that is defined with the 
folowing equation:; N
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with: Si² – the variance of ith Group, N – total length of the 
discretized and weighted simples, Ni – length of the vector 
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Variances are considered unequal if T> X²( ,k-1)  with X²( ,k-1) 
is the biggest critical distribution of Chi square ( =significant 
threshold, k-1: degree of freedom, and k is the number 
of samples). 

 P-value – is related to  (for great values of P, the hypothesis 
H0 is true, otherwise this hypothesis is false). 

 
a) 

 
b) 

 
 
Fig. 29. a) Thickness variation of the blank with lD=1.2 and tb=0.8; 
1.2; 1.4 and 1.6 mm; b) summary table thickness variation of the 
blank with lD =1.2 and tb=0.8; 1.2; 1.4 and 1.6 mm 
 

In Figure 29a, the x-axis which represents the different groups, 
defines the initial blank thickness tb, and the y-axis values 
represent the different thickness ranges of the blank along the 
diagonal path during the forming process. From this graph, we see 
that the difference between the maximum and minimum thickness 
of the blank at the end of the process along the diagonal path 
is almost obtained with law thicknesses of the blank. Indeed, for 
tb=0.8 mm, we notice that the stamped sheet metal has undergone 
less thinning much lower than it is for the other tb cases. From 
Figure 29b we notice that the p-value is equal to 0, which is lower 

than the risk of error  (0.05), this fact confirms that the 
hypothesis H0 is well justified. Certainly, the indicator of dispersion 
(standard deviation) varies from one sample to another depending 
on the group, so according to the value of the initial thickness 
of the blank tb. Therefore, the samples presented in Figure 29b 
haven’t the same variance. It is concluded that for rectangular 
final geometry of the blank with lD > 1, and with initial law 
thickness tb, there is important thinning of the deformed blank.  
 
Effect of the section radius of the punch rsP parameter on the 
blank thinning rate 

In order to visualize the influence of rsP parameter on the 
thickness distribution of a blank, we have considered different 
values rsP with for the tb varying in the range from 0.2 to 0.8 and 
an aspect ratio equals to 1.2. Results are then obtained with 
Matlab as shown it in Figures 30a and b. 
 
a) 

 
 

b) 

 
 
Fig. 30. a) Thickness variation of the blank with lD=1, tb=1.2 and 
rsP=0.2, 0.4, 0.6 and 0.8; b) summary table for the same 
conditions as in Figure 30a 
 

The results presented in Figure 30a show that the 4 samples of 
the parameter rsP have almost the same inter-quartile; we can say 
that they are compatible for a certain range of thickness. We have 
noticed from the value p-value (Figure 30b) that also the same 
samples have the same variances. We also note from these figures 
that as far as the parameter rsP decreases the thinning of the final 
blank sheet increases. In conclusion, the thinning rate is high for 
low values of rsP in the case of a square plate and initial thickness 
tb=1.2 mm. 
 
Effect of the fillet radius of the die rfD parameter on the blank 
thinning rate 

In this example, we will study the influence of the rfD variation 
on the thinning rate of the blank for a square initial sheet blank with 
tb=1.2 mm. In this case rsp=0.4, lD=1 and tb=1.2 mm, rfD is varying 
from 0.4 to 0.8. We obtained the following results (Figure 31). 
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a) 

 
b) 

 
 
Fig. 31. a) Blank thickness for rfD=0.4, 0.6 and 0.8 with rsP=0.4, 
lD=1 and tb=1.2 mm; b) group summary table of data related to the 
Figure 31a 
 

It is concluded from Figure 31, that the lowest mean value 
is (1.1656) that is corresponding to the 1st group (rfD=0.4). 
We notice that according to this statistical parameter, the highest 
thinning is found for rfD=0.4, we can also notice that as far as this 
parameter increases the thinning is spectacularly diminishing. 
We can conclude that with a square DDP with initial blank 
thickness of 1.2 mm more the parameter rfD increases, more the 
thinning is decreasing. 
 
Effect of the section radius of the die rsD parameter on the 
blank thinning rate 

From Figure 32a, we can see that the formed metal reaches 
a maximum rate of thinning (thickness <1 mm) for rsD=0.4. 
In conclusion, for a square plate, more the parameter rsD increases, 
there is a chance to get important thinning. 

Figure 33a shows that the minimum variations in thickness 
corresponds to rfD=0.2. We can conclude that a high value of rfD 
minimizes the risk of excessive thinning leading to failure. 
 
 

7. Description of optimization problem 
 
 

The improvement and the cost reduction in forming process 
products has been always a major objective in automotive industry. 

In a forming process, the sheet metal is subjected to mechanical 
tools action; punch, die and blank holder. These tools are generally 
considered as rigid bodies, causing contact actions, the deformation 
of the sheet along a well defined kinematic. The normal and 
tangential interactions due to contact between tools and sheet metal 
are taken into account. The coefficients of friction blank-tools 
have a great influence on the process development and its quality. 
Taking into account all these considerations and from finite element 

a) 

 
b) 

 
 
Fig. 32. a) Blank thickness for rsD=0.4, 0.6 and 0.8 with rfP=0.4, 
lD=1 and tb=1.2 mm; b) group summary table with blank thickness 
for rsD=0.2, 0.25, 0.4, rfP=0.1, lD=1 and tb=1.2 mm 
 
a) 

 
b) 

 
 
Fig. 33. a) Variation of rfP=0.1, 0.2, 0.4 with rsD=0.25, lD=1 and 
tb=1.2 mm; b) group summary table 

7.	�Description of optimisation 
problem

calculations performed by Abaqus, we used the values of blank 
thickening in deep drawing along the diagonal path of sheet metal 
to judge the quality and the acceptability of the final formed 
product. In this study, a criterion of maximum thinning tolerance 
of 20% is adopted. We chose this criterion because the risk of 
developing structural defects resulting from thinning as, wrinkles, 
breaks, tears, is mostly high when thinning reaches 20%. 
However, according to formatting examples presented in the 
previous section, the numerical predictions are far from 
experimental realities. For this reason, we chose an approximation 
method for optimization of geometrical parameters of the drawing 
process such as the different radii of the die and the punch. 
 
7.1 Results and discussion 
 

After studying the effects of different geometric parameters 
such as (rSP, rFD, rfp, rsD, lD, and SP, tb) on the forming process, 
specifically on the thinning phenomenon and the thickness 
distribution along the critical diagonal path; the following 
conclusions are considered:  
 according to a final geometry dimension of the clank lD, 

we can associate particular values of the tools radii to avoid 
wrinkling and tearing of the blank. In fact; several 
Remarque’s are underlined; 

 if rfp is too small, the material of the sheet sticks to the die 
matrix and cannot flow easily into the of matrix cavity, which 
leads to the appearance of wrinkles and excessive thinning; 

 for large values of lD, and low values of initial blank thickness 
tb, the maximum thinning decreases. But for rsD=0.6, and with 
the increase of rFP thinning was growing up instead 
of decreasing. A radius rfp smaller than 0.7 leads to the 
development of local wrinkles; 

 the fact of increasing rsD usually causes the decrease of 
maximum thinning;  

 a low value of the fillet punch radius rfp associated with a high 
value of blank thickness leads to increased thinning and the 
possible appearance of wrinkles; 

 increase of Sp for rectangular plates causes the appearance 
of thinning. For values of punch travel above the section 
width of the blank, some wrinkles may appear at the corner 
of the sheet metal after forming.  
On the light of these interpretations we have reviewed the 

following examples to show the thinning distribution of the final 
formed product according to highlight the particular combinations of 
geometric parameters that can lead to excessive thing and wrinkling. 
 
Effect of rsD and rfP on the forming process 

rfp=0.2 ; rsD=0.3; tb=1.2; lD=1.4: law values with rfP and rsD, 
we have reported that for rfP>0.1 and rsD<0.6 we have less 
thinning and les wrinkling as shown by Figure 34 with rfP=0.2; 
rsD=0.3; tb=1.2; lD=1.4. 

 
Effect of rfD and rsP on the forming process 

In this case, we have considered the simulation of the following 
parameters: rfD=0.6; rsP=0.7; tb=1.2, lD=1.2, with high values 
of parameters rsP and rfD, it is shown that the thinning is more 
important in this case (Figure 35). 

rsP=0.4, rfD=0.6, tb=1.2 and lD=1, for a square blank sheet with 
law values of the parameters rsP and rfD on a reduction of thinning 
according to Figure 35 is shown in Figure 36. 

 
 

Fig. 34. DDP of a rectangular profile 
 

 
 

Fig. 35. High thinning with rfD=0.6; rsP=0.7; tb=1.2, lD=1.2 
 

 
 
Fig. 36. Thinning reductions in the critic path; rsP=0.4, rfD=0.6, 
tb=1.2 and lD=1 
 
8. Optimisation problem of the DDP  
 
8.1 Optimization method 
 
Basic concept of optimization techniques 

The mathematical concept of optimization is presented by 
Figure 37. It is composed mainly of two key phases: modelling 
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a) 

 
b) 

 
 
Fig. 31. a) Blank thickness for rfD=0.4, 0.6 and 0.8 with rsP=0.4, 
lD=1 and tb=1.2 mm; b) group summary table of data related to the 
Figure 31a 
 

It is concluded from Figure 31, that the lowest mean value 
is (1.1656) that is corresponding to the 1st group (rfD=0.4). 
We notice that according to this statistical parameter, the highest 
thinning is found for rfD=0.4, we can also notice that as far as this 
parameter increases the thinning is spectacularly diminishing. 
We can conclude that with a square DDP with initial blank 
thickness of 1.2 mm more the parameter rfD increases, more the 
thinning is decreasing. 
 
Effect of the section radius of the die rsD parameter on the 
blank thinning rate 

From Figure 32a, we can see that the formed metal reaches 
a maximum rate of thinning (thickness <1 mm) for rsD=0.4. 
In conclusion, for a square plate, more the parameter rsD increases, 
there is a chance to get important thinning. 

Figure 33a shows that the minimum variations in thickness 
corresponds to rfD=0.2. We can conclude that a high value of rfD 
minimizes the risk of excessive thinning leading to failure. 
 
 

7. Description of optimization problem 
 
 

The improvement and the cost reduction in forming process 
products has been always a major objective in automotive industry. 

In a forming process, the sheet metal is subjected to mechanical 
tools action; punch, die and blank holder. These tools are generally 
considered as rigid bodies, causing contact actions, the deformation 
of the sheet along a well defined kinematic. The normal and 
tangential interactions due to contact between tools and sheet metal 
are taken into account. The coefficients of friction blank-tools 
have a great influence on the process development and its quality. 
Taking into account all these considerations and from finite element 

a) 

 
b) 

 
 
Fig. 32. a) Blank thickness for rsD=0.4, 0.6 and 0.8 with rfP=0.4, 
lD=1 and tb=1.2 mm; b) group summary table with blank thickness 
for rsD=0.2, 0.25, 0.4, rfP=0.1, lD=1 and tb=1.2 mm 
 
a) 

 
b) 

 
 
Fig. 33. a) Variation of rfP=0.1, 0.2, 0.4 with rsD=0.25, lD=1 and 
tb=1.2 mm; b) group summary table 

calculations performed by Abaqus, we used the values of blank 
thickening in deep drawing along the diagonal path of sheet metal 
to judge the quality and the acceptability of the final formed 
product. In this study, a criterion of maximum thinning tolerance 
of 20% is adopted. We chose this criterion because the risk of 
developing structural defects resulting from thinning as, wrinkles, 
breaks, tears, is mostly high when thinning reaches 20%. 
However, according to formatting examples presented in the 
previous section, the numerical predictions are far from 
experimental realities. For this reason, we chose an approximation 
method for optimization of geometrical parameters of the drawing 
process such as the different radii of the die and the punch. 
 
7.1 Results and discussion 
 

After studying the effects of different geometric parameters 
such as (rSP, rFD, rfp, rsD, lD, and SP, tb) on the forming process, 
specifically on the thinning phenomenon and the thickness 
distribution along the critical diagonal path; the following 
conclusions are considered:  
 according to a final geometry dimension of the clank lD, 

we can associate particular values of the tools radii to avoid 
wrinkling and tearing of the blank. In fact; several 
Remarque’s are underlined; 

 if rfp is too small, the material of the sheet sticks to the die 
matrix and cannot flow easily into the of matrix cavity, which 
leads to the appearance of wrinkles and excessive thinning; 

 for large values of lD, and low values of initial blank thickness 
tb, the maximum thinning decreases. But for rsD=0.6, and with 
the increase of rFP thinning was growing up instead 
of decreasing. A radius rfp smaller than 0.7 leads to the 
development of local wrinkles; 

 the fact of increasing rsD usually causes the decrease of 
maximum thinning;  

 a low value of the fillet punch radius rfp associated with a high 
value of blank thickness leads to increased thinning and the 
possible appearance of wrinkles; 

 increase of Sp for rectangular plates causes the appearance 
of thinning. For values of punch travel above the section 
width of the blank, some wrinkles may appear at the corner 
of the sheet metal after forming.  
On the light of these interpretations we have reviewed the 

following examples to show the thinning distribution of the final 
formed product according to highlight the particular combinations of 
geometric parameters that can lead to excessive thing and wrinkling. 
 
Effect of rsD and rfP on the forming process 

rfp=0.2 ; rsD=0.3; tb=1.2; lD=1.4: law values with rfP and rsD, 
we have reported that for rfP>0.1 and rsD<0.6 we have less 
thinning and les wrinkling as shown by Figure 34 with rfP=0.2; 
rsD=0.3; tb=1.2; lD=1.4. 

 
Effect of rfD and rsP on the forming process 

In this case, we have considered the simulation of the following 
parameters: rfD=0.6; rsP=0.7; tb=1.2, lD=1.2, with high values 
of parameters rsP and rfD, it is shown that the thinning is more 
important in this case (Figure 35). 

rsP=0.4, rfD=0.6, tb=1.2 and lD=1, for a square blank sheet with 
law values of the parameters rsP and rfD on a reduction of thinning 
according to Figure 35 is shown in Figure 36. 

 
 

Fig. 34. DDP of a rectangular profile 
 

 
 

Fig. 35. High thinning with rfD=0.6; rsP=0.7; tb=1.2, lD=1.2 
 

 
 
Fig. 36. Thinning reductions in the critic path; rsP=0.4, rfD=0.6, 
tb=1.2 and lD=1 
 
8. Optimisation problem of the DDP  
 
8.1 Optimization method 
 
Basic concept of optimization techniques 

The mathematical concept of optimization is presented by 
Figure 37. It is composed mainly of two key phases: modelling 

7.1.	�Results and discussion

8.	�Optimisation problem  
of the DDP

8.1.	�Optimisation method
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and solving the optimization problem. The modelling phase 
consists of: 
1. selecting a number of variables where the user is authorized 

to adjust, 
2. choosing an objective function, 
3. taking into account the possible constraints. 
 

 
 

Fig. 37. The concept of basic mathematical optimization [16] 
 

According to [15], most research has focused on solving some 
optimization problems, where the selection and application 
of an optimization algorithm can be adapted. Accordingly, 
the application of optimization techniques to the forming process 
of a particular metal requires a large expertise. However, most 
professionals in the process of forming lack this expertise, which 
is an obstacle to fully exploit the potential of forming process 
optimization. To overcome this obstacle, it is necessary for an 
optimization strategy, in forming process to adopt a structured 
approach that can solve major problems of metal forming. 
The subsequent sections are devoted to describe the optimization 
approach used in this work to enhance the metal forming process 
defined in previous sections. In the following scheme we are 
describing the different steps of resolution adopted in this work. 
 
 
8.2 Optimization methods in forming process 
 
 

There are several methods to optimize forming processes such 
as: Newton method, genetic algorithms, design of experiments 
and Tagauchy techniques. These methods are used directly to deal 
with problems mathematically modelled based on mechanical 
models, or indirectly by example in learning sequences through 
artificial neural networks. 
 
Classic method 
 
Principle 

The minimization of a function called cost function or objective 
function is the most used for the optimization of forming process. 
This function depends on several parameters that affect the 
calculation of first and second derivatives of the function. The number 
of function parameters to minimize also affects the number 
of iterations to obtain a solution that solves the whole problem [16]. 

Among the conventional common methods using the gradient 
of the function we are explaining briefly in the following 
paragraph the principle of this technique. 

Considering f(x) the cost function to be minimized and f the 
gradient of this function. The algorithm will therefore seek 
to construct a sequence of points x1 x2 ... xk x3, such as indicated 
by [16]: 
f (xk +1) <f (xk) 

The algorithm therefore consists in the following expression: 
xk +1 = xk-  k f (xk) 
with , the step taken in the direction of the highest slope. 
The stopping criterion may include a tolerance on the variation 
of the cost function, a tolerance on the variation of x, a tolerance 
value of the gradient, a maximum number of iterations or 
a maximum number of evaluations. 

The effectiveness of this method is low. It can be shown that 
two consecutive directions will be orthogonal and that this feature 
may cause oscillations and lead to the divergence of the algorithm. 
 
Choice of used method 

According to previous sections, it was concluded that 
by taking some basic precautions into account, we are able to finally 
reproduce fairly well with a finite element simulation a forming 
process operation. thinning phenomenon is one of the most 
difficult to control during the development of stamping operations, 
because many parameters such as the geometry of tools, stamping 
speed, lubrication tools and so influence the geometry and 
residual stress state of the final product. This methodology 
is devoted primarily to the geometric configuration of the forming 
equipment and determining target parameters during optimization. 
The parameters are chosen to optimize the rays of the die and the 
punch as those factors are most sensitive in the forming process. 

In general for a problem of single-objective optimization, 
we define an objective function (response function), we seek 
to optimize with respect to involved parameters. The objective 
function chosen in our case is the difference between the reference 
curve of the initial thickness of the plate and thickening of the 
curve obtained after numerical simulation via Abaqus explicit, 
this function is called monobjective function. 

Let f (x) the objective function described as: 
f(x) = e-y(x) 
with: e – initial thickness of the blank; y(x) – thickness function, 
x – x coordination along the diagonal path. 

We have applied optimization of mild steel deep drawing 
process, with initial blank thickness of 1.2 mm. 
 
Looking for the thickening function 

In the previous chapter, the FE numerical simulation using 
Abaqus software has allowed us to extract the thickening curves 
for different cases. However, it was not possible to extract the 
equations for these curves via Abaqus software. For this reason, 
we have chosen to use a mathematical curve fitting program 
included in Matlab software to provide an approximate equation 
of the curve thickening. 
 

 
 

Fig. 38. Thickening vs. x distance along the diagonal path 

8.2.	�Optimisation methods  
in forming process

Example: Here above is a thickening curve shown in Figure 38 
obtained with: rsD=0.25; rfP=0.1; tb=1.2 and lD=1. 

To know the equation describing this curve we extracted first 
the coordinate values of points forming the curve. 

The values are then saved in a text file. After finishing with 
the numerical simulation by Abaqus, then data are imported to the 
Matlab workspace for example. Coordinate values of the thickness 
curve as shown in Figure 39. 
 

 
 

Fig. 39. Thickness distributions via Matlab software 
 
The curve presented by Figure 39 is built from the coordinates 

of the thickness distribution extracted at first from FE results.  
Indeed, in the next step we will choose the most suitable 

equation that overlies the shape of the curve formed by point list 
previously defined among all equations proposed by Matlab.  
 

 
 

Fig. 40. Fitting results and statistics parameters 
 

To verify the correct choice of the equation, there are 
statistical parameters that help us to take the right decision. These 
sets are listed in the fitting results window (Figure 40). They are 
represented as follows [16-18]: 
 SSE (Sum of Square due to Error) is the sum of squared errors 

of adjustment. A value closer to zero indicates a successful 
adjustment; 

 R-square: the square of the correlation between input values and 
predicted values after adjustment. A value closer to 1 indicates 
a good correlation between the actual and fitted values; 

 adjusted R-square: it is the degree of freedom of R-square. 
A value closer to 1 indicates a better fit; 

 RMSE: the root of the mean errors. A value closer to 0 indicates 
a good fit with less error. 
Because our goal is to study the rate of thinning in a formed 

blank, we choose the values of thickness variations which are less 
than the initial thickness of the blank (1.2 mm). Indeed, areas 
at the final product whose thickness exceeds the value of the initial 
thickness of the blank, and undergo high thickening. 

Then, we obtained for these values of thickness, the curve shown 
by Figure 41. In this case, the corresponding equation proposed by 
Matlab is an order 7 Gaussian curve with corresponding coefficients: 
Adjusted R-square and ESS are respectively closer to 1 and 0. 
 

 
 

Fig. 41. Thinning curve 
 

The best equation corresponding to the represented curve is as 
follows: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 

Below are presented the equation coefficients with 
a confidence equal to 95%. 
a1=0.4232 (-3.359, 4.206); b1=56.95 (26.06, 87.85); c1=19.18 
(-58.1, 96.47) 
a2=1.105 (1.067, 1.144); b2 = 122 (77.07, 167); c2=103 (-501.1, 707.2) 
a3=0.04211 (-0.7084, 0.7926); b3=97.21 (22.51, 171.9); c3=12.88 
(-57.95, 83.71) 
a4=0.04122 (-0.3036, 0.386); b4=87.12 (74.04, 100.2); c4=8.848 
(-10.05, 27.75) 
a5=-0.0006871 (-0.06063, 0.05926); b5=88.92 (16.41, 161.4); 
c5=0.6008 (-47.75, 48.96) 
a6=-0.01663 (-0.06769, 0.03444); b6=75.42 (74.6, 76.24); 
c6=2.121 (-0.2897, 4.532) 
a7=-0.006177 (-0.06756, 0.05521); b7=78.68 (58.73, 98.64); 
c7=3.954 (-23.07, 30.98) 

The best fit of this curve is obtained with the following equation 
 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 

Below are giving the equation coefficients with a confidence 
equal to 95%. 
a1=0.4232 (-3.359, 4.206); b1=56.95 (26.06, 87.85); c1=19.18 
(-58.1, 96.47) 
a2=1.105 (1.067, 1.144); b2=122 (77.07, 167); c2=103 (-501.1, 707.2) 
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and solving the optimization problem. The modelling phase 
consists of: 
1. selecting a number of variables where the user is authorized 

to adjust, 
2. choosing an objective function, 
3. taking into account the possible constraints. 
 

 
 

Fig. 37. The concept of basic mathematical optimization [16] 
 

According to [15], most research has focused on solving some 
optimization problems, where the selection and application 
of an optimization algorithm can be adapted. Accordingly, 
the application of optimization techniques to the forming process 
of a particular metal requires a large expertise. However, most 
professionals in the process of forming lack this expertise, which 
is an obstacle to fully exploit the potential of forming process 
optimization. To overcome this obstacle, it is necessary for an 
optimization strategy, in forming process to adopt a structured 
approach that can solve major problems of metal forming. 
The subsequent sections are devoted to describe the optimization 
approach used in this work to enhance the metal forming process 
defined in previous sections. In the following scheme we are 
describing the different steps of resolution adopted in this work. 
 
 
8.2 Optimization methods in forming process 
 
 

There are several methods to optimize forming processes such 
as: Newton method, genetic algorithms, design of experiments 
and Tagauchy techniques. These methods are used directly to deal 
with problems mathematically modelled based on mechanical 
models, or indirectly by example in learning sequences through 
artificial neural networks. 
 
Classic method 
 
Principle 

The minimization of a function called cost function or objective 
function is the most used for the optimization of forming process. 
This function depends on several parameters that affect the 
calculation of first and second derivatives of the function. The number 
of function parameters to minimize also affects the number 
of iterations to obtain a solution that solves the whole problem [16]. 

Among the conventional common methods using the gradient 
of the function we are explaining briefly in the following 
paragraph the principle of this technique. 

Considering f(x) the cost function to be minimized and f the 
gradient of this function. The algorithm will therefore seek 
to construct a sequence of points x1 x2 ... xk x3, such as indicated 
by [16]: 
f (xk +1) <f (xk) 

The algorithm therefore consists in the following expression: 
xk +1 = xk-  k f (xk) 
with , the step taken in the direction of the highest slope. 
The stopping criterion may include a tolerance on the variation 
of the cost function, a tolerance on the variation of x, a tolerance 
value of the gradient, a maximum number of iterations or 
a maximum number of evaluations. 

The effectiveness of this method is low. It can be shown that 
two consecutive directions will be orthogonal and that this feature 
may cause oscillations and lead to the divergence of the algorithm. 
 
Choice of used method 

According to previous sections, it was concluded that 
by taking some basic precautions into account, we are able to finally 
reproduce fairly well with a finite element simulation a forming 
process operation. thinning phenomenon is one of the most 
difficult to control during the development of stamping operations, 
because many parameters such as the geometry of tools, stamping 
speed, lubrication tools and so influence the geometry and 
residual stress state of the final product. This methodology 
is devoted primarily to the geometric configuration of the forming 
equipment and determining target parameters during optimization. 
The parameters are chosen to optimize the rays of the die and the 
punch as those factors are most sensitive in the forming process. 

In general for a problem of single-objective optimization, 
we define an objective function (response function), we seek 
to optimize with respect to involved parameters. The objective 
function chosen in our case is the difference between the reference 
curve of the initial thickness of the plate and thickening of the 
curve obtained after numerical simulation via Abaqus explicit, 
this function is called monobjective function. 

Let f (x) the objective function described as: 
f(x) = e-y(x) 
with: e – initial thickness of the blank; y(x) – thickness function, 
x – x coordination along the diagonal path. 

We have applied optimization of mild steel deep drawing 
process, with initial blank thickness of 1.2 mm. 
 
Looking for the thickening function 

In the previous chapter, the FE numerical simulation using 
Abaqus software has allowed us to extract the thickening curves 
for different cases. However, it was not possible to extract the 
equations for these curves via Abaqus software. For this reason, 
we have chosen to use a mathematical curve fitting program 
included in Matlab software to provide an approximate equation 
of the curve thickening. 
 

 
 

Fig. 38. Thickening vs. x distance along the diagonal path 

Example: Here above is a thickening curve shown in Figure 38 
obtained with: rsD=0.25; rfP=0.1; tb=1.2 and lD=1. 

To know the equation describing this curve we extracted first 
the coordinate values of points forming the curve. 

The values are then saved in a text file. After finishing with 
the numerical simulation by Abaqus, then data are imported to the 
Matlab workspace for example. Coordinate values of the thickness 
curve as shown in Figure 39. 
 

 
 

Fig. 39. Thickness distributions via Matlab software 
 
The curve presented by Figure 39 is built from the coordinates 

of the thickness distribution extracted at first from FE results.  
Indeed, in the next step we will choose the most suitable 

equation that overlies the shape of the curve formed by point list 
previously defined among all equations proposed by Matlab.  
 

 
 

Fig. 40. Fitting results and statistics parameters 
 

To verify the correct choice of the equation, there are 
statistical parameters that help us to take the right decision. These 
sets are listed in the fitting results window (Figure 40). They are 
represented as follows [16-18]: 
 SSE (Sum of Square due to Error) is the sum of squared errors 

of adjustment. A value closer to zero indicates a successful 
adjustment; 

 R-square: the square of the correlation between input values and 
predicted values after adjustment. A value closer to 1 indicates 
a good correlation between the actual and fitted values; 

 adjusted R-square: it is the degree of freedom of R-square. 
A value closer to 1 indicates a better fit; 

 RMSE: the root of the mean errors. A value closer to 0 indicates 
a good fit with less error. 
Because our goal is to study the rate of thinning in a formed 

blank, we choose the values of thickness variations which are less 
than the initial thickness of the blank (1.2 mm). Indeed, areas 
at the final product whose thickness exceeds the value of the initial 
thickness of the blank, and undergo high thickening. 

Then, we obtained for these values of thickness, the curve shown 
by Figure 41. In this case, the corresponding equation proposed by 
Matlab is an order 7 Gaussian curve with corresponding coefficients: 
Adjusted R-square and ESS are respectively closer to 1 and 0. 
 

 
 

Fig. 41. Thinning curve 
 

The best equation corresponding to the represented curve is as 
follows: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 

Below are presented the equation coefficients with 
a confidence equal to 95%. 
a1=0.4232 (-3.359, 4.206); b1=56.95 (26.06, 87.85); c1=19.18 
(-58.1, 96.47) 
a2=1.105 (1.067, 1.144); b2 = 122 (77.07, 167); c2=103 (-501.1, 707.2) 
a3=0.04211 (-0.7084, 0.7926); b3=97.21 (22.51, 171.9); c3=12.88 
(-57.95, 83.71) 
a4=0.04122 (-0.3036, 0.386); b4=87.12 (74.04, 100.2); c4=8.848 
(-10.05, 27.75) 
a5=-0.0006871 (-0.06063, 0.05926); b5=88.92 (16.41, 161.4); 
c5=0.6008 (-47.75, 48.96) 
a6=-0.01663 (-0.06769, 0.03444); b6=75.42 (74.6, 76.24); 
c6=2.121 (-0.2897, 4.532) 
a7=-0.006177 (-0.06756, 0.05521); b7=78.68 (58.73, 98.64); 
c7=3.954 (-23.07, 30.98) 

The best fit of this curve is obtained with the following equation 
 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 

Below are giving the equation coefficients with a confidence 
equal to 95%. 
a1=0.4232 (-3.359, 4.206); b1=56.95 (26.06, 87.85); c1=19.18 
(-58.1, 96.47) 
a2=1.105 (1.067, 1.144); b2=122 (77.07, 167); c2=103 (-501.1, 707.2) 
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a3=0.04211 (-0.7084, 0.7926); b3=97.21 (22.51, 171.9); c3=12.88 
(-57.95, 83.71) 
a4=0.04122 (-0.3036, 0.386); b4=87.12 (74.04, 100.2); c4=8.848 
(-10.05, 27.75) 
a5=-0.0006871 (-0.06063, 0.05926); b5=88.92 (16.41, 161.4); 
c5=0.6008 (-47.75, 48.96) 
a6=-0.01663 (-0.06769, 0.03444); b6=75.42 (74.6, 76.24); 
c6=2.121 (-0.2897, 4.532) 
a7=-0.006177 (-0.06756, 0.05521); b7=78.68 (58.73, 98.64); 
c7=3.954 (-23.07, 30.98) 
 
Optimization function 

After determining the equation of the thickness curve, the 
objective function becomes equal to 

 
f(x)=1.2-a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 

To optimize this objective function, we have used the function 
"fminbnd" performed in Matlab optimization toolbox which 
allows the minimization of a function in one variable in a fixed 
interval. The minimization function is then saved as an M-file and 
it is done with the following variables: 
x=fminbnd (@(x) Abaqus (x,a1,b1,c1, a2,b2,c2, a3,b3,c3,a4,b4,c4, 
a5,b5,c5, a6,b6,c6 ,a7,b7,c7), 61.3441,120) 
when we calculate the value of this minimized function we find: 
f=0.0938 is thus obtained for x=107.1561 mm, f (x)=0.0938 

The value found for f (x) becomes minimal. Otherwise for 
a distance 107.1561 mm we have less thinning.  

By following the same steps as in the previous example, we 
calculate the functions minimized for different values of geometric 
parameters rsD, RfP and RsP, RfD. By comparing the values of f(x) 
obtained for different cases, we choose the lowest. Indeed, the 
objective function is minimal in our case a low rate of thinning. 
Therefore, the risk of occurrence of these defects decreases for 
selected parameters. It then derives the optimal values of these 
geometric parameters: radii of punch and die. 
 
 

9. Search of optimal geometric 
parameters
 
9.1 Search of the optimal RsD and rfP values 
 
 

Taking into account the previous example, we'll continue to 
look for other values and RsD rfP equations of thickness and objective 
functions to determine the optimal values of these parameters. 

rsD=0.4 and rfP=0.1 
by adopting a similar methodology as in the previous example, we 
have determined the thickness equation as follows.  
 
y(x)=a1*exp (-((x-b1)/c1)^2) + ... + a6*exp (-((x-b6)/c6)^2 
 
with the following coefficients verifying a confidence value of 
95%: 
a1=0.1233 (-0.96, 1.207); b1=47.88 (-119.8, 215.6); c1=23.35 
(-114, 160.7) 
a2=1.102 (1.092, 1.113); b2=111.1 (-76.69, 298.9); c2=409.2 
(-4854, 5672) 
a3=-0.01318(-0.02148, -0.004891); b3=80.97 (80.73, 81.21); 
c3=1.791(0.9269, 2.656) 

a4=-0.04269 (-0.3768, 0.2914); b4=81.04 (65.63, 96.45); 
c4=7.37(-16.51, 31.25) 
a5=-0.04958 (-0.2447, 0.1455); b5=75.1 (72.75, 77.45); c5=4.8 
(1.245, 8.356) 
a6=-0.00895 (-0.1945, 0.1766); b6=89.27 (-74.38, 252.9); 
c6=10.83 (-96.06, 117.7) 
with the following statistics parameters:  

SSE: 3.76exp5 
R-square: 0.9992 
Adjusted R-square: 0.9989 
RMSE: 0.001008 
 

f(x) is minimal for x=113.5970 and its value is equal to: 
 
f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a6*exp(-((x-b6)/c6)^2 = 0.0972. 
 

rsD=0.25 and rfP=0.4: 
The expression of the equation of thickness curve is done by: 
 

y(x) = a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following equation coefficients verifying a confidence 
interval of 95%: 
a1=0.08261 (0.002547, 0.1627); b1=59.03 (57.8, 60.26); 
c1=9.908 (7.012, 12.8) 
a2=0.2163 (-1.124, 1.557); b2=49.75 (25.33, 74.17); c2=27.33 
(-24.02, 78.69) 
a3=1.181 (1.006, 1.356); b3=-2.879 (-37.2, 31.44); c3=83.14 
(-143, 309.2) 
a4=1.011 (-0.4632, 2.484); b4=127.5 (59.19, 195.7); c4 = 59.7 
(22.14, 97.26) 
a5=0.02191(-6.857*1013,6.857*1013);  
b5=92.17(-5.312*1014, 5.312*1014);  
c5=0.1333(-3.626*1014, 3.626*1014) 
a6=0.04702 (0.03598, 0.05806); b6=69.88 (69.45, 70.31); 
c6=4.827 (4.127, 5.526) 
a7=0.03335 (-0.02731, 0.09401); b7=85.62 (84.82, 86.42); 
c7=1.104 (-0.1832, 2.391)  
a8=0.05877 (-0.1257, 0.2432); b8=93.79 (90.54, 97.05); c8=13.04 
(2.518, 23.56) 
and with the following statistics parameters: 

SSE: 6.083 exp (-5) 
R-square: 0.9988 
Adjusted R-square: 0.9978 
RMSE: 0.001424 
 

f(x) is minimum for x=116.6013 mm and its value in this case 
is equal to: 
 
f(x)=1.2- y(x) =a1*exp (-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0701 
 

rsD=0.4 and rfP=0.4 
The expression of the equation of thickness curve is done by: 
 

y(x) = a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following equation coefficients verifying a confidence 
interval of 95%: 
a1=0.2897 (-0.9158, 1.495); b1=65.51 (57.54, 73.48); c1=9.022 
(-4.807, 22.85) 
a2=1.123 (1.091, 1.154); b2=121.5 (89.44, 153.6); c2=109 
(-161.5, 379.5) 

9.	�Search of optimal 
geometric parameters

9.1.	�Search of the optimal  
RsD and rfP values

a3=0.04296 (0.03036, 0.05557); b3=85.75 (85.45, 86.04); 
c3=1.51(0.7563, 2.263) 
a4=0.008928 (0.003119, 0.01474); b4=92.54 (92.04, 93.04); 
c4=1.22(0.1885, 2.251) 
a5=0.002508 (-0.002666, 0.007682); b5=95.7 (93.4, 98); 
c5=2.061 (-1.371, 5.493) 
a6=0.02983 (-0.03026, 0.08993); b6=80.13 (78.93, 81.33); 
c6=3.19 (0.268, 6.113) 
a7=0.05673 (-0.5539, 0.6673); b7=90.55 (33.45, 147.6); c7=16.27 
(-37.41, 69.95) 
a8=0.01087 (-0.006902, 0.02865); b8=76.48 (75.28, 77.67); 
c8=1.868 (0.5105, 3.225) 

The statistics parameters: 
SSE: 3.68 exp (-5) 
R-square: 0.9992 
Adjusted R-square: 0.9985 
RMSE: 0.001127 

 

f (x) is minimum for x=117.6832 mm and its value is done by: 
 

f(x)=1.2- y(x) = a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0749  

rsD=0.25 and rfP=0.2 
The expression of the thickness curve in this case is done by: 

 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 

with the following coefficients verifying a confidence interval 
of 95%: 
a1=0.184 (-9.013, 9.381); b1=65.78 (-249.3, 380.9); c1=10.08 
(-127.5, 147.6) 
a2=1.109 (1.109, 1.11); b2=112.5 (110.7, 114.2); c2=174.7 (84.74, 
264.7) 
a3=0.01317 (-0.1128, 0.1392); b3=87.55 (85.46, 89.64); c3=2.182 
(-3.562, 7.926) 
a4=0.05056 (-0.8239, 0.9251); b4=78.72 (72.03, 85.4); c4=3.801 
(-13.13, 20.74) 
a5=-0.1224 (-9.81, 9.565); b5=75.22 (-335.7, 486.1); c5=9.535 
(-174.1, 193.2) 
a6=0.04234 (-0.2425, 0.3272); b6=72.55 (70.14, 74.96); c6=2.922 
(-0.5512, 6.396) 
a7=0.005245 (-0.1151, 0.1256); b7=91.09 (80.96, 101.2); 
c7=2.504 (-10.01, 15.02) 
a8=0.002789 (-0.06102, 0.0666); b8=96.13 (42.23, 150); 
c8=4.521 (-27.41, 36.46) 

The statistics parameters are: 
SSE: 2.636exp-005 
R-square: 0.9996 
Adjusted R-square: 0.9993 
RMSE: 0.0009373 

 

f(x) is minimal for x=112.5001 mm and its value in this case is 
done by: 
 

f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0910 

 
rsD=0.2 and rfP=0.1 

The equation of thickness curve is done by: 
 

y(x) = a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following coefficients corresponding to a confidence 
interval of 95%: 

a1=3.561exp5 (-1.926exp10, 1.926exp10); b1=-23.88 (-3.246exp5, 
3.245exp5) 
c1=21.45 (-4.56exp4, 4.565exp4); a2=1.306 (-8.893exp4, 
8.893exp4) 
b2=223.6 (-2.548exp7, 2.548exp7); c2=330.5 (-1.509exp7, 
1.509exp7) 
a3=-0.01705 (-0.02054, -0.01356); b3=75.5 (75.38, 75.63); 
c3=1.28 (0.9817, 1.578) 
a4=0.02843 (-52.13, 52.18); b4=107.2 (-2887, 3101); c4=17.34 
(-6722, 6756) 
a5=0.145 (-45.07, 45.36); b5=64.37 (-703.4, 832.1); c5=10.47 
(-523, 543.9) 
a6=0.01094 (-0.009594, 0.03148); b6=86.76 (85.79, 87.73); 
c6=3.395 (1.021, 5.768) 
a7=0.02533 (-1.735, 1.785); b7=92.57 (42.49, 142.7); c7=9.187 
(-103.8, 122.2) 
a8=-0.1288 (-5.514exp4, 5.514exp4); b8=167.3 (-1.126exp7, 
1.127exp7) 
c8=84.72 (-1.043exp7, 1.043exp7) 

The statistics parameters are: 
SSE: 0.0001832 
R-square: 0.9982 
Adjusted R-square: 0.9978 
RMSE: 0.001427 

 
f (x) is minimal for x=113.0403 and its value in this case is equal to: 
 
f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0922 

 
The previous results for the objective minimized functions f(x) 

are resumed in the following comparative Table 2.  
 
Table 2. 
Comparison between values of optimization functions

rsD 0.25 0.4 0.25 0.4 0.25 0.2
rfP 0.1 0.1 0.4 0.4 0.2 0.1
f(x) 0.0938 0.0972 0.0701 0.0749 0.0910 0.0922

 
According to this table, it is shown that the lowest value of f(x) 

is equal to 0.0701 corresponding to RsD=0.25 and RfP=0.4. For 
these two values of the radii of die and punch there is less 
thinning and high risk of defect occurrence within the end of the 
forming process. We can say that to optimize the forming process 
for a predefined material, it is preferable to choose the following 
values of RsD rfP, to minimize the problems of thinning as follows 

rsD=0.25 and rfP=0.4 
In conclusion, at this stage of optimization, mathematical 

modeling show a decrease in the rate of thinning during forming 
process for rfP > 0.1 and RsD <0.6, according to initial geometric 
parameters considered in this problem. 
 
 
9.2 Search of the optimal rsP and rfD values.
 
 

rsP=0.4 and rfD=0.25: 
Following the same steps as it was defined in the previous 

section. We have looked for the equation of y(x), and it was 
defined as: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a6*exp(-((x-b6)/c6)^2 
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a3=0.04211 (-0.7084, 0.7926); b3=97.21 (22.51, 171.9); c3=12.88 
(-57.95, 83.71) 
a4=0.04122 (-0.3036, 0.386); b4=87.12 (74.04, 100.2); c4=8.848 
(-10.05, 27.75) 
a5=-0.0006871 (-0.06063, 0.05926); b5=88.92 (16.41, 161.4); 
c5=0.6008 (-47.75, 48.96) 
a6=-0.01663 (-0.06769, 0.03444); b6=75.42 (74.6, 76.24); 
c6=2.121 (-0.2897, 4.532) 
a7=-0.006177 (-0.06756, 0.05521); b7=78.68 (58.73, 98.64); 
c7=3.954 (-23.07, 30.98) 
 
Optimization function 

After determining the equation of the thickness curve, the 
objective function becomes equal to 

 
f(x)=1.2-a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 

To optimize this objective function, we have used the function 
"fminbnd" performed in Matlab optimization toolbox which 
allows the minimization of a function in one variable in a fixed 
interval. The minimization function is then saved as an M-file and 
it is done with the following variables: 
x=fminbnd (@(x) Abaqus (x,a1,b1,c1, a2,b2,c2, a3,b3,c3,a4,b4,c4, 
a5,b5,c5, a6,b6,c6 ,a7,b7,c7), 61.3441,120) 
when we calculate the value of this minimized function we find: 
f=0.0938 is thus obtained for x=107.1561 mm, f (x)=0.0938 

The value found for f (x) becomes minimal. Otherwise for 
a distance 107.1561 mm we have less thinning.  

By following the same steps as in the previous example, we 
calculate the functions minimized for different values of geometric 
parameters rsD, RfP and RsP, RfD. By comparing the values of f(x) 
obtained for different cases, we choose the lowest. Indeed, the 
objective function is minimal in our case a low rate of thinning. 
Therefore, the risk of occurrence of these defects decreases for 
selected parameters. It then derives the optimal values of these 
geometric parameters: radii of punch and die. 
 
 

9. Search of optimal geometric 
parameters
 
9.1 Search of the optimal RsD and rfP values 
 
 

Taking into account the previous example, we'll continue to 
look for other values and RsD rfP equations of thickness and objective 
functions to determine the optimal values of these parameters. 

rsD=0.4 and rfP=0.1 
by adopting a similar methodology as in the previous example, we 
have determined the thickness equation as follows.  
 
y(x)=a1*exp (-((x-b1)/c1)^2) + ... + a6*exp (-((x-b6)/c6)^2 
 
with the following coefficients verifying a confidence value of 
95%: 
a1=0.1233 (-0.96, 1.207); b1=47.88 (-119.8, 215.6); c1=23.35 
(-114, 160.7) 
a2=1.102 (1.092, 1.113); b2=111.1 (-76.69, 298.9); c2=409.2 
(-4854, 5672) 
a3=-0.01318(-0.02148, -0.004891); b3=80.97 (80.73, 81.21); 
c3=1.791(0.9269, 2.656) 

a4=-0.04269 (-0.3768, 0.2914); b4=81.04 (65.63, 96.45); 
c4=7.37(-16.51, 31.25) 
a5=-0.04958 (-0.2447, 0.1455); b5=75.1 (72.75, 77.45); c5=4.8 
(1.245, 8.356) 
a6=-0.00895 (-0.1945, 0.1766); b6=89.27 (-74.38, 252.9); 
c6=10.83 (-96.06, 117.7) 
with the following statistics parameters:  

SSE: 3.76exp5 
R-square: 0.9992 
Adjusted R-square: 0.9989 
RMSE: 0.001008 
 

f(x) is minimal for x=113.5970 and its value is equal to: 
 
f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a6*exp(-((x-b6)/c6)^2 = 0.0972. 
 

rsD=0.25 and rfP=0.4: 
The expression of the equation of thickness curve is done by: 
 

y(x) = a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following equation coefficients verifying a confidence 
interval of 95%: 
a1=0.08261 (0.002547, 0.1627); b1=59.03 (57.8, 60.26); 
c1=9.908 (7.012, 12.8) 
a2=0.2163 (-1.124, 1.557); b2=49.75 (25.33, 74.17); c2=27.33 
(-24.02, 78.69) 
a3=1.181 (1.006, 1.356); b3=-2.879 (-37.2, 31.44); c3=83.14 
(-143, 309.2) 
a4=1.011 (-0.4632, 2.484); b4=127.5 (59.19, 195.7); c4 = 59.7 
(22.14, 97.26) 
a5=0.02191(-6.857*1013,6.857*1013);  
b5=92.17(-5.312*1014, 5.312*1014);  
c5=0.1333(-3.626*1014, 3.626*1014) 
a6=0.04702 (0.03598, 0.05806); b6=69.88 (69.45, 70.31); 
c6=4.827 (4.127, 5.526) 
a7=0.03335 (-0.02731, 0.09401); b7=85.62 (84.82, 86.42); 
c7=1.104 (-0.1832, 2.391)  
a8=0.05877 (-0.1257, 0.2432); b8=93.79 (90.54, 97.05); c8=13.04 
(2.518, 23.56) 
and with the following statistics parameters: 

SSE: 6.083 exp (-5) 
R-square: 0.9988 
Adjusted R-square: 0.9978 
RMSE: 0.001424 
 

f(x) is minimum for x=116.6013 mm and its value in this case 
is equal to: 
 
f(x)=1.2- y(x) =a1*exp (-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0701 
 

rsD=0.4 and rfP=0.4 
The expression of the equation of thickness curve is done by: 
 

y(x) = a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following equation coefficients verifying a confidence 
interval of 95%: 
a1=0.2897 (-0.9158, 1.495); b1=65.51 (57.54, 73.48); c1=9.022 
(-4.807, 22.85) 
a2=1.123 (1.091, 1.154); b2=121.5 (89.44, 153.6); c2=109 
(-161.5, 379.5) 

a3=0.04296 (0.03036, 0.05557); b3=85.75 (85.45, 86.04); 
c3=1.51(0.7563, 2.263) 
a4=0.008928 (0.003119, 0.01474); b4=92.54 (92.04, 93.04); 
c4=1.22(0.1885, 2.251) 
a5=0.002508 (-0.002666, 0.007682); b5=95.7 (93.4, 98); 
c5=2.061 (-1.371, 5.493) 
a6=0.02983 (-0.03026, 0.08993); b6=80.13 (78.93, 81.33); 
c6=3.19 (0.268, 6.113) 
a7=0.05673 (-0.5539, 0.6673); b7=90.55 (33.45, 147.6); c7=16.27 
(-37.41, 69.95) 
a8=0.01087 (-0.006902, 0.02865); b8=76.48 (75.28, 77.67); 
c8=1.868 (0.5105, 3.225) 

The statistics parameters: 
SSE: 3.68 exp (-5) 
R-square: 0.9992 
Adjusted R-square: 0.9985 
RMSE: 0.001127 

 

f (x) is minimum for x=117.6832 mm and its value is done by: 
 

f(x)=1.2- y(x) = a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0749  

rsD=0.25 and rfP=0.2 
The expression of the thickness curve in this case is done by: 

 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 

with the following coefficients verifying a confidence interval 
of 95%: 
a1=0.184 (-9.013, 9.381); b1=65.78 (-249.3, 380.9); c1=10.08 
(-127.5, 147.6) 
a2=1.109 (1.109, 1.11); b2=112.5 (110.7, 114.2); c2=174.7 (84.74, 
264.7) 
a3=0.01317 (-0.1128, 0.1392); b3=87.55 (85.46, 89.64); c3=2.182 
(-3.562, 7.926) 
a4=0.05056 (-0.8239, 0.9251); b4=78.72 (72.03, 85.4); c4=3.801 
(-13.13, 20.74) 
a5=-0.1224 (-9.81, 9.565); b5=75.22 (-335.7, 486.1); c5=9.535 
(-174.1, 193.2) 
a6=0.04234 (-0.2425, 0.3272); b6=72.55 (70.14, 74.96); c6=2.922 
(-0.5512, 6.396) 
a7=0.005245 (-0.1151, 0.1256); b7=91.09 (80.96, 101.2); 
c7=2.504 (-10.01, 15.02) 
a8=0.002789 (-0.06102, 0.0666); b8=96.13 (42.23, 150); 
c8=4.521 (-27.41, 36.46) 

The statistics parameters are: 
SSE: 2.636exp-005 
R-square: 0.9996 
Adjusted R-square: 0.9993 
RMSE: 0.0009373 

 

f(x) is minimal for x=112.5001 mm and its value in this case is 
done by: 
 

f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0910 

 
rsD=0.2 and rfP=0.1 

The equation of thickness curve is done by: 
 

y(x) = a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following coefficients corresponding to a confidence 
interval of 95%: 

a1=3.561exp5 (-1.926exp10, 1.926exp10); b1=-23.88 (-3.246exp5, 
3.245exp5) 
c1=21.45 (-4.56exp4, 4.565exp4); a2=1.306 (-8.893exp4, 
8.893exp4) 
b2=223.6 (-2.548exp7, 2.548exp7); c2=330.5 (-1.509exp7, 
1.509exp7) 
a3=-0.01705 (-0.02054, -0.01356); b3=75.5 (75.38, 75.63); 
c3=1.28 (0.9817, 1.578) 
a4=0.02843 (-52.13, 52.18); b4=107.2 (-2887, 3101); c4=17.34 
(-6722, 6756) 
a5=0.145 (-45.07, 45.36); b5=64.37 (-703.4, 832.1); c5=10.47 
(-523, 543.9) 
a6=0.01094 (-0.009594, 0.03148); b6=86.76 (85.79, 87.73); 
c6=3.395 (1.021, 5.768) 
a7=0.02533 (-1.735, 1.785); b7=92.57 (42.49, 142.7); c7=9.187 
(-103.8, 122.2) 
a8=-0.1288 (-5.514exp4, 5.514exp4); b8=167.3 (-1.126exp7, 
1.127exp7) 
c8=84.72 (-1.043exp7, 1.043exp7) 

The statistics parameters are: 
SSE: 0.0001832 
R-square: 0.9982 
Adjusted R-square: 0.9978 
RMSE: 0.001427 

 
f (x) is minimal for x=113.0403 and its value in this case is equal to: 
 
f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2 = 0.0922 

 
The previous results for the objective minimized functions f(x) 

are resumed in the following comparative Table 2.  
 
Table 2. 
Comparison between values of optimization functions

rsD 0.25 0.4 0.25 0.4 0.25 0.2
rfP 0.1 0.1 0.4 0.4 0.2 0.1
f(x) 0.0938 0.0972 0.0701 0.0749 0.0910 0.0922

 
According to this table, it is shown that the lowest value of f(x) 

is equal to 0.0701 corresponding to RsD=0.25 and RfP=0.4. For 
these two values of the radii of die and punch there is less 
thinning and high risk of defect occurrence within the end of the 
forming process. We can say that to optimize the forming process 
for a predefined material, it is preferable to choose the following 
values of RsD rfP, to minimize the problems of thinning as follows 

rsD=0.25 and rfP=0.4 
In conclusion, at this stage of optimization, mathematical 

modeling show a decrease in the rate of thinning during forming 
process for rfP > 0.1 and RsD <0.6, according to initial geometric 
parameters considered in this problem. 
 
 
9.2 Search of the optimal rsP and rfD values.
 
 

rsP=0.4 and rfD=0.25: 
Following the same steps as it was defined in the previous 

section. We have looked for the equation of y(x), and it was 
defined as: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a6*exp(-((x-b6)/c6)^2 

9.2.	�Search of the optimal  
rsP and rfD values
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with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.5184 (-1.462, 2.499); b1=62.29 (54.02, 70.56); c1=10.08 
(-3.152, 23.31) 
a2=1.102 (1.021, 1.183); b2=120.4 (85.83, 155); c2=77 (-150.5, 
304.5) 
a3=0.1308 (-1.291, 1.553); b3=87.15 (32.2, 142.1); c3=17.65 
(-38.06, 73.37) 
a4=-0.0149 (-0.01998, -0.009813); b4=78.87 (78.72, 79.03); 
c4=1.698 (1.266, 2.131) 
a5=0.02207 (-0.0006604, 0.0448); b5=88.25 (87.27, 89.23); 
c5=4.342 (2.762, 5.921) 
a6=0.141 (-0.0693, 0.3514); b6=74.45 (72.48, 76.42); c6=6.463 
(3.651, 9.275) 

The statistics parameters are done by: 
SSE: 2.208e-005 
R-square: 0.9997 
Adjusted R-square: 0.9995 
RMSE: 0.0007832 
 
The function f(x) is minimized for x=116.1692 mm, this 

means that there was minimum thinning after the sheet forming 
at the distance x=116.1692 mm and at this distance: 

 
f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a6*exp(-((x-b6)/c6)^2 = 0.0928 
 

rsP=0.4 and rfD=0.4: 
The equation of thickness curve is done by: 
 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.2302 (-2.65, 3.11); b1=62.05 (16.38, 107.7); c1=16.41 
(-21.98, 54.79) 
a2=0.467 (-7.568, 8.502); b2=45.89 (-13.71, 105.5); c2=30.61 
(-136.9, 198.1) 
a3=1.166 (0.1066, 2.226); b3=-8.196 (-136.6, 120.2); c3=62.93 
(-418.4, 544.3) 
a4=0.1311 (-1.149, 1.411); b4=75.2 (55.89, 94.5); c4=8.671 
(-6.359, 23.7) 
a5=1.098 (-0.06019, 2.257); b5=122 (52.14, 191.8); c5=50.6 
(-245.7, 346.9) 
a6=-1.61 (-3848, 3844); b6=90.09 (-12.66, 192.8); c6=6.076 
(-131.1, 143.2) 
a7=0.1149 (-2.247, 2.477); b7=97.72 (35.94, 159.5); c7=12.14 
(-58.56, 82.84) 

The statistics parameters are done by: 
SSE: 2.369e-005 
R-square: 0.9995 
Adjusted R-square: 0.9992 
RMSE: 0.0008472 
 
The function f(x) is minimized for x=115.00 mm 
 

f(x)=1.2-a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 = 
0.0790 
 

rsP=0.4 and rfD=0.6: 
The equation of thickness curve is done by: 
 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 

with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.2302 (-2.65, 3.11); b1=62.05 (16.38, 107.7); c1=16.41 
(-21.98, 54.79) 
a2=0.467 (-7.568, 8.502); b2=45.89 (-13.71, 105.5); c2=30.61 
(-136.9, 198.1) 
a3=1.166 (0.1066, 2.226); b3=-8.196 (-136.6, 120.2); c3=62.93 
(-418.4, 544.3) 
a4=0.1311 (-1.149, 1.411); b4=75.2 (55.89, 94.5); c4=8.671 
(-6.359, 23.7) 
a5=1.098 (-0.06019, 2.257); b5=122 (52.14, 191.8); c5=50.6 
(-245.7, 346.9) 
a6=-1.61 (-3848, 3844); b6=90.09 (-12.66, 192.8); c6=6.076 
(-131.1, 143.2) 
a7=0.1149 (-2.247, 2.477); b7=97.72 (35.94, 159.5); c7=12.14 
(-58.56, 82.84) 
a8=1.721 (-3844, 3847); b8=90 (-25.39, 205.4); c8=6.195 (-132.3, 
144.7) 

The statistics parameters are done by: 
SSE: 6.142 exp(-5) 
R-square: 0.998 
Adjusted R-square: 0.9965 
RMSE: 0.001408 
 
The function f(x) is minimized for x=114.5862 mm and f(x) 

is done with: 
 
f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2=0.0608 
 

rsP=0.4 and rfD=0.8: 
The equation of thickness curve is done by: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.08399 (-0.1323, 0.3002); b1=54.02 (36.61, 71.43); c1=24.35 
(6.695, 42.01) 
a2=1.198 (1.193, 1.204); b2=1.391 (-7.908, 10.69); c2=214.9 
(-122, 551.8) 
a3=0.2938 (-0.674, 1.262); b3=129.9 (111.4, 148.4); c3=33.79 
(-23.17, 90.76) 
a4=0.01307 (-0.008136, 0.03427); b4=75.81 (61.58, 90.04); 
c4=6.714 (-2.881, 16.31) 
a5=-0.03196 (-0.06004, -0.00388); b5=80.54 (80.02, 81.06); 
c5=3.92 (2.943, 4.897) 
a6=0.05901 (-0.2239, 0.3419); b6=93 (85.41, 100.6); c6=17.5 
(-3.022, 38.02) 
a7=0.006954 (-0.01532, 0.02923); b7=67.47(58.15, 76.79); 
c7=5.481 (-0.4445, 11.41) 
a8=0.04047 (-0.7717, 0.8526); b8=72.65 (69.85, 75.45); c8=6.073 
(-23.08, 35.23) 

The statistics parameters are done by: 
SSE: 1.541e-005 
R-square: 0.9991 
Adjusted R-square: 0.9985 
RMSE: 0.0006732 

 
The function f(x) is minimized for x=114.6336 mm, with f(x) 

is done by the following 
 
f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2=0.0395 

rsP=0.25 and rfD=0.25: 
The equation of thickness curve is done by: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.1444 (-0.05489, 0.3437); b1=59.18 (56.11, 62.25); c1=11.05 
(7.398, 14.71) 
a2=0.2571 (-1.065, 1.579); b2=48.42 (23.3, 73.54); c2=24.93 
(-14.48, 64.34) 
a3=1.19 (1.096, 1.285); b3=0.05335 (-27.16, 27.27); c3=82.72 
(-111.5, 277) 
a4=0.9655 (-0.4893, 2.42); b4=124.1 (89.38, 158.7); c4=46.87 
(-14.58, 108.3) 
a5=0.09067 (0.03569, 0.1457); b5=70.36 (69.59, 71.13); 
c5=6.174 (5.017, 7.33) 
a6=0.1376 (-0.4407, 0.7159); b6=89.13 (80.58, 97.68); c6=15.42 
(-2.594, 33.44) 
a7=0.02248 (0.01368, 0.03129); b7=79.17 (78.78, 79.55); 
c7=2.233 (1.411, 3.055) 

The statistics parameters are done by: 
 SSE: 2.685 exp (-5) 
 R-square: 0.9996 
 Adjusted R-square: 0.9993 
 RMSE: 0.0008887 

 
The function f(x) is minimized for x=116.6566 mm with f(x) 

is done by the following 
 
f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a7*exp(-((x-b7)/c7)^2=0.0905  
 

rsP=0.6 and rfD=0.25: 
The equation of thickness curve is done by: 

 
y(x) =a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1 = 0.155 (-0.9685, 1.279);    b1 = 58.28 (55.85, 60.7);   c1 = 
10.51 (2.373, 18.65) 
a2 = 0.8499 (-1.344, 3.044);    b2 = 40.92 (-14.37, 96.2);    c2 
= 26.09 (-141, 193.2) 
a3 = 1.096 (0.06832, 2.124);     b3 = -6.846 (-41.14, 27.45);     
c3 =28.57 (-166.7, 223.8) 
a4 = 0.2629 (-2.187, 2.713);     b4 = 74.28 (57.65, 90.9); c4 
=12.88 (-11.7, 37.45) 
a5 = 1.104 (1.085, 1.123); b5 =117.3 (106.8, 127.8);    c5 = 
63.62 (-54.77, 182) 
a6 = 0.04622 (-0.03824, 0.1307); b6 = 90.81 (89.95, 91.66); c6 = 
5.024 (2.523, 7.525) 
a7 =0.07014 (-0.2923, 0.4326);  b7 = 97.29 (84.34, 110.2);  c7 
= 9.485  (-7.38, 26.35) 

The statistics parameters are done by: 
 SSE: 5.271e-005 
 R-square: 0.999 
 Adjusted R-square: 0.9985 
 RMSE: 0.001264 

The function f(x) is minimized for x=111.2032 mm, with f(x) 
is done by the following 

f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a7*exp(-((x-b7)/c7)^2=0.0950 
 
for the different cases considered in this section, we will extract 
optimal values of rsP and rfD parameters according to the 
comparative values in the Table 3 below. 
 
Table 3. 
Comparison of optimization results 

rsP 0.4 0.4 0.4 0.4 0.25 0.6 
rfD 0.25 0.4 0.6 0.8 0.25 0.25 
F(x) 0.0928 0.0790 0.0608 0.0395 0.0905 0.0950 

 
Comparing the results presented in the table, we notice that 

f(x) is minimal for rsP=RfD=0.4 and 0.8. We can conclude then the 
following optimal values: 

rsP=RfD=0.4 and 0.8 
We checked in the previous chapter for a square plate with 

thin rsP < RfD (more precisely rsP=RfD=0.4 and 0.6) there is less 
risk of developing thinning process during formatting. Therefore, 
with the optimal values of RsP and RfD, you get a quality product. 
 
 

10. Conclusion  
 

In order to improve the comprehension of some experimental 
results that we may face in the industrial deep drawing process, 
a larger parametric analysis is needed. Analysis using FEM 
parametric study is therefore indispensable. Nevertheless, a best 
FEM model has to be at the same time the lower in the CPU cost 
time and closely the most representative to experimental cases. 

In this study we have conceived a FEM model of parametric 
deep drawing process analysis, a spectrum consisting of 136 
geometries is used to assess a sheet metal DDP. As a first step, the 
numerical simulation using dynamic explicit finite element 
analysis has been validated within existing experimental data. 
This validation has concerned (MS material), different punch 
travels, various blank thicknesses; a good correlation has been 
noticed between experimental and simulated results. 

The second step which is the major objective of this study 
consists on a geometric parametric FEA study. In fact, even 
though we have a large amount of numerical investigations in the 
literature review through this last decade; a specific detailed 
parametric study that involves the most dominating deep drawing 
parameters is well suitable at this stage. To emphasize interaction 
between the most fluctuant of this parameters we have choose 
to deal with the following. 

In this paper, effect of the following geometric parameters 
(rsP, rfD, rfP, rsD, lD, sP and tb) and their interaction on drawability 
of DDP are well analyzed. In particular, their sensitivity 
to thinning phenomena and thickness distribution along critical 
paths were obtained according to this trail; 

As it is known the increase of rsD parameter leads 
to diminishing of the maximum thinning in general, but it was 
observed that a law value of the fillet punch radius associated 
with a high blank thickness leads to a growth of maximum 
thinning and sometimes to wrinkling. In addition, the larger the 
aspect ratio lD is, the smaller the maximum thinning particularly 
for deep drawing punch travels. These results could be effectively 
applied to produce successful DDP.  
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with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.5184 (-1.462, 2.499); b1=62.29 (54.02, 70.56); c1=10.08 
(-3.152, 23.31) 
a2=1.102 (1.021, 1.183); b2=120.4 (85.83, 155); c2=77 (-150.5, 
304.5) 
a3=0.1308 (-1.291, 1.553); b3=87.15 (32.2, 142.1); c3=17.65 
(-38.06, 73.37) 
a4=-0.0149 (-0.01998, -0.009813); b4=78.87 (78.72, 79.03); 
c4=1.698 (1.266, 2.131) 
a5=0.02207 (-0.0006604, 0.0448); b5=88.25 (87.27, 89.23); 
c5=4.342 (2.762, 5.921) 
a6=0.141 (-0.0693, 0.3514); b6=74.45 (72.48, 76.42); c6=6.463 
(3.651, 9.275) 

The statistics parameters are done by: 
SSE: 2.208e-005 
R-square: 0.9997 
Adjusted R-square: 0.9995 
RMSE: 0.0007832 
 
The function f(x) is minimized for x=116.1692 mm, this 

means that there was minimum thinning after the sheet forming 
at the distance x=116.1692 mm and at this distance: 

 
f(x)=1.2- y(x) =a1*exp(-((x-b1)/c1)^2) + ... + 
a6*exp(-((x-b6)/c6)^2 = 0.0928 
 

rsP=0.4 and rfD=0.4: 
The equation of thickness curve is done by: 
 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.2302 (-2.65, 3.11); b1=62.05 (16.38, 107.7); c1=16.41 
(-21.98, 54.79) 
a2=0.467 (-7.568, 8.502); b2=45.89 (-13.71, 105.5); c2=30.61 
(-136.9, 198.1) 
a3=1.166 (0.1066, 2.226); b3=-8.196 (-136.6, 120.2); c3=62.93 
(-418.4, 544.3) 
a4=0.1311 (-1.149, 1.411); b4=75.2 (55.89, 94.5); c4=8.671 
(-6.359, 23.7) 
a5=1.098 (-0.06019, 2.257); b5=122 (52.14, 191.8); c5=50.6 
(-245.7, 346.9) 
a6=-1.61 (-3848, 3844); b6=90.09 (-12.66, 192.8); c6=6.076 
(-131.1, 143.2) 
a7=0.1149 (-2.247, 2.477); b7=97.72 (35.94, 159.5); c7=12.14 
(-58.56, 82.84) 

The statistics parameters are done by: 
SSE: 2.369e-005 
R-square: 0.9995 
Adjusted R-square: 0.9992 
RMSE: 0.0008472 
 
The function f(x) is minimized for x=115.00 mm 
 

f(x)=1.2-a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 = 
0.0790 
 

rsP=0.4 and rfD=0.6: 
The equation of thickness curve is done by: 
 

y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 

with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.2302 (-2.65, 3.11); b1=62.05 (16.38, 107.7); c1=16.41 
(-21.98, 54.79) 
a2=0.467 (-7.568, 8.502); b2=45.89 (-13.71, 105.5); c2=30.61 
(-136.9, 198.1) 
a3=1.166 (0.1066, 2.226); b3=-8.196 (-136.6, 120.2); c3=62.93 
(-418.4, 544.3) 
a4=0.1311 (-1.149, 1.411); b4=75.2 (55.89, 94.5); c4=8.671 
(-6.359, 23.7) 
a5=1.098 (-0.06019, 2.257); b5=122 (52.14, 191.8); c5=50.6 
(-245.7, 346.9) 
a6=-1.61 (-3848, 3844); b6=90.09 (-12.66, 192.8); c6=6.076 
(-131.1, 143.2) 
a7=0.1149 (-2.247, 2.477); b7=97.72 (35.94, 159.5); c7=12.14 
(-58.56, 82.84) 
a8=1.721 (-3844, 3847); b8=90 (-25.39, 205.4); c8=6.195 (-132.3, 
144.7) 

The statistics parameters are done by: 
SSE: 6.142 exp(-5) 
R-square: 0.998 
Adjusted R-square: 0.9965 
RMSE: 0.001408 
 
The function f(x) is minimized for x=114.5862 mm and f(x) 

is done with: 
 
f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2=0.0608 
 

rsP=0.4 and rfD=0.8: 
The equation of thickness curve is done by: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a8*exp(-((x-b8)/c8)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.08399 (-0.1323, 0.3002); b1=54.02 (36.61, 71.43); c1=24.35 
(6.695, 42.01) 
a2=1.198 (1.193, 1.204); b2=1.391 (-7.908, 10.69); c2=214.9 
(-122, 551.8) 
a3=0.2938 (-0.674, 1.262); b3=129.9 (111.4, 148.4); c3=33.79 
(-23.17, 90.76) 
a4=0.01307 (-0.008136, 0.03427); b4=75.81 (61.58, 90.04); 
c4=6.714 (-2.881, 16.31) 
a5=-0.03196 (-0.06004, -0.00388); b5=80.54 (80.02, 81.06); 
c5=3.92 (2.943, 4.897) 
a6=0.05901 (-0.2239, 0.3419); b6=93 (85.41, 100.6); c6=17.5 
(-3.022, 38.02) 
a7=0.006954 (-0.01532, 0.02923); b7=67.47(58.15, 76.79); 
c7=5.481 (-0.4445, 11.41) 
a8=0.04047 (-0.7717, 0.8526); b8=72.65 (69.85, 75.45); c8=6.073 
(-23.08, 35.23) 

The statistics parameters are done by: 
SSE: 1.541e-005 
R-square: 0.9991 
Adjusted R-square: 0.9985 
RMSE: 0.0006732 

 
The function f(x) is minimized for x=114.6336 mm, with f(x) 

is done by the following 
 
f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a8*exp(-((x-b8)/c8)^2=0.0395 

rsP=0.25 and rfD=0.25: 
The equation of thickness curve is done by: 

 
y(x)=a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1=0.1444 (-0.05489, 0.3437); b1=59.18 (56.11, 62.25); c1=11.05 
(7.398, 14.71) 
a2=0.2571 (-1.065, 1.579); b2=48.42 (23.3, 73.54); c2=24.93 
(-14.48, 64.34) 
a3=1.19 (1.096, 1.285); b3=0.05335 (-27.16, 27.27); c3=82.72 
(-111.5, 277) 
a4=0.9655 (-0.4893, 2.42); b4=124.1 (89.38, 158.7); c4=46.87 
(-14.58, 108.3) 
a5=0.09067 (0.03569, 0.1457); b5=70.36 (69.59, 71.13); 
c5=6.174 (5.017, 7.33) 
a6=0.1376 (-0.4407, 0.7159); b6=89.13 (80.58, 97.68); c6=15.42 
(-2.594, 33.44) 
a7=0.02248 (0.01368, 0.03129); b7=79.17 (78.78, 79.55); 
c7=2.233 (1.411, 3.055) 

The statistics parameters are done by: 
 SSE: 2.685 exp (-5) 
 R-square: 0.9996 
 Adjusted R-square: 0.9993 
 RMSE: 0.0008887 

 
The function f(x) is minimized for x=116.6566 mm with f(x) 

is done by the following 
 
f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a7*exp(-((x-b7)/c7)^2=0.0905  
 

rsP=0.6 and rfD=0.25: 
The equation of thickness curve is done by: 

 
y(x) =a1*exp(-((x-b1)/c1)^2) + ... + a7*exp(-((x-b7)/c7)^2 
 
with the following coefficients that are done with a confidence 
interval of 95%: 
a1 = 0.155 (-0.9685, 1.279);    b1 = 58.28 (55.85, 60.7);   c1 = 
10.51 (2.373, 18.65) 
a2 = 0.8499 (-1.344, 3.044);    b2 = 40.92 (-14.37, 96.2);    c2 
= 26.09 (-141, 193.2) 
a3 = 1.096 (0.06832, 2.124);     b3 = -6.846 (-41.14, 27.45);     
c3 =28.57 (-166.7, 223.8) 
a4 = 0.2629 (-2.187, 2.713);     b4 = 74.28 (57.65, 90.9); c4 
=12.88 (-11.7, 37.45) 
a5 = 1.104 (1.085, 1.123); b5 =117.3 (106.8, 127.8);    c5 = 
63.62 (-54.77, 182) 
a6 = 0.04622 (-0.03824, 0.1307); b6 = 90.81 (89.95, 91.66); c6 = 
5.024 (2.523, 7.525) 
a7 =0.07014 (-0.2923, 0.4326);  b7 = 97.29 (84.34, 110.2);  c7 
= 9.485  (-7.38, 26.35) 

The statistics parameters are done by: 
 SSE: 5.271e-005 
 R-square: 0.999 
 Adjusted R-square: 0.9985 
 RMSE: 0.001264 

The function f(x) is minimized for x=111.2032 mm, with f(x) 
is done by the following 

f(x)=1.2- y(x) =1.2-a1*exp(-((x-b1)/c1)^2) + ... + 
a7*exp(-((x-b7)/c7)^2=0.0950 
 
for the different cases considered in this section, we will extract 
optimal values of rsP and rfD parameters according to the 
comparative values in the Table 3 below. 
 
Table 3. 
Comparison of optimization results 

rsP 0.4 0.4 0.4 0.4 0.25 0.6 
rfD 0.25 0.4 0.6 0.8 0.25 0.25 
F(x) 0.0928 0.0790 0.0608 0.0395 0.0905 0.0950 

 
Comparing the results presented in the table, we notice that 

f(x) is minimal for rsP=RfD=0.4 and 0.8. We can conclude then the 
following optimal values: 

rsP=RfD=0.4 and 0.8 
We checked in the previous chapter for a square plate with 

thin rsP < RfD (more precisely rsP=RfD=0.4 and 0.6) there is less 
risk of developing thinning process during formatting. Therefore, 
with the optimal values of RsP and RfD, you get a quality product. 
 
 

10. Conclusion  
 

In order to improve the comprehension of some experimental 
results that we may face in the industrial deep drawing process, 
a larger parametric analysis is needed. Analysis using FEM 
parametric study is therefore indispensable. Nevertheless, a best 
FEM model has to be at the same time the lower in the CPU cost 
time and closely the most representative to experimental cases. 

In this study we have conceived a FEM model of parametric 
deep drawing process analysis, a spectrum consisting of 136 
geometries is used to assess a sheet metal DDP. As a first step, the 
numerical simulation using dynamic explicit finite element 
analysis has been validated within existing experimental data. 
This validation has concerned (MS material), different punch 
travels, various blank thicknesses; a good correlation has been 
noticed between experimental and simulated results. 

The second step which is the major objective of this study 
consists on a geometric parametric FEA study. In fact, even 
though we have a large amount of numerical investigations in the 
literature review through this last decade; a specific detailed 
parametric study that involves the most dominating deep drawing 
parameters is well suitable at this stage. To emphasize interaction 
between the most fluctuant of this parameters we have choose 
to deal with the following. 

In this paper, effect of the following geometric parameters 
(rsP, rfD, rfP, rsD, lD, sP and tb) and their interaction on drawability 
of DDP are well analyzed. In particular, their sensitivity 
to thinning phenomena and thickness distribution along critical 
paths were obtained according to this trail; 

As it is known the increase of rsD parameter leads 
to diminishing of the maximum thinning in general, but it was 
observed that a law value of the fillet punch radius associated 
with a high blank thickness leads to a growth of maximum 
thinning and sometimes to wrinkling. In addition, the larger the 
aspect ratio lD is, the smaller the maximum thinning particularly 
for deep drawing punch travels. These results could be effectively 
applied to produce successful DDP.  

10.	�C onclusions
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Once the numerical simulations have grasp the most 
important parameters effect on the DDP of a general rectangular 
cup, we have designed a statistical scheme to represent clearly 
and quantitatively the influence of this parameter using the 
statistical tool box. This has lead to interesting interpretation of 
the data provided from numerical FE simulations within the 
Abaqus commercial code. This fact, can give much more interest 
and precision to describe the influence and the importance degree 
of each geometric variable. FE analysis associated to an 
optimization tool; mono-objective function has been described. 
This study could further improve the final quality of parts 
produced by adapting the optimization method to determine the 
optimal values of geometric parameters of the DDP tools. 
 
 

Nomenclature
WP: width of the punch section 
WB: width of the blank 
WD: width of the die cavity 
tLP: total length of the punch section (for rectangular cups) 
tLB: total length of the blank (for rectangular cups) 
tLD: total length of the die cavity (for rectangular cups) 
RfD: fillet radius of the die 
RfP: section radius of the punch 
RsD: section radius of the die 
RsP: section radius of the punch 
tb: initial thickness of the sheet metal blank 
VP: punch speed 
SP: punch travel (stroke) 

Y: yield stress 
E: Young’s modulus 
lD: die normalized aspect ratio; lD=tLD/ WD 
lB: blank normalized aspect ratio; lB=tLB/ WB 
rsP: section normalized radius of the punch 
rsD: section normalized radius of the die 
rfD: fillet normalized radius of the die 
rfP: fillet normalized radius of the punch 
SP: normalize punch travel (stroke) 
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