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Properties

Abstract

Purpose: of this paper is to present a practical and robust methodology developed to evaluate the fatigue life of 
seam welded joints under combined cyclic loading.
Design/methodology/approach: Fatigue analysis was conducted in virtual environment. The finite element 
stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue 
life prediction using the S x N (stress x life) method. A tube-to-plate specimen was submitted to a combined 
cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated 
based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application 
of the proposed numerical-experimental methodology and contributions for the technical development are 
discussed. Major challenges associated with this modelling and improvement proposals are finally presented.
Findings: The finite element model was validated due to laboratory results. The analytical stress result presented 
upper value due to the approach used that considered the fillet weld supported all work. The model presented a 
good representation of failure and load correlation.
Research limitations/implications: The measurement or modelling of the residual stresses resulting from 
the welding process was not included in this work. However, the thermal and metallurgical effects, such as 
distortions and residual stresses, were considered indirectly with regard to the corrections performed in the 
fatigue curves obtained from the investigated samples.
Practical implications: Integrating fatigue analysis and finite elements, it is possible to analyse several welded joint 
configurations in the design phase, providing development time and cost reduction, increasing the project reliability.
Originality/value: This methodology will permit, in further studies, the modelling of both stresses, in-service 
and residual stresses, acting together, which seem like an advantage to engineers and researchers who work in 
design and evaluation of structural components against fatigue failures.
Keywords: Fatigue; Combined loading; Finite element analysis; Welding
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1. Introduction 
 

Welding of metals is applied on a very wide scale, especially 
for building up structures by connecting plates and girders of 
different cross sections. Welded joints are unavoidable in many 
modern structural and mechanical components, providing 
different design options for the structures which cannot by simply 
obtained with other manufacturing techniques. For this reason, the 
economic advantages of welded joints have been known for over 
50 years.Residual stresses may be defined as those stresses 
present in a material or structure without external loading, i.e. 
self-equilibrating stresses, a secondary loading. They arise when 
portion of a material or structural component undergo non- 
uniform plastic deformation associated with the manufacturing 
process, loading during the structure assemblage or in-service and 
heat treatments [1]. 

Considerable attention has been given to the residual stresses 
due to welding. Normally, welded joints have their final state of 
residual stresses brought about by the interaction of different 
sources [2-3]. Relatively simple residual stress distribution can be 
expected in a single pass weld if only shrinkage is considered. 
However, variations from this basic pattern occur when phase 
transformations are associated with shrinkage. In such cases, 
material’s volume increases as a result of the austenite 
transformation. Sometimes, a surface quenching due to 
inhomogeneous cooling also contributes to an increase in volume. 
Taking into account the interaction of these different sources, a 
complex residual stress state can appear. 

The influence of residual stresses on the structural integrity of 
mechanical components is largely studied. Tensile residual 
stresses in regions near crack tip may promote brittle fracture, 
fatigue failure and stress corrosion [4-7]. Compressive residual 
stresses, on the other hand, can reduce the buckling in welded 
joints [8] and improve fatigue resistance, by reducing the effective 
tensile stress, increasing the crack closure and, consequently, 
retarding the crack growth [9]. 

Fatigue codes or recommendations exist in almost every 
industrialized country. Structural design approaches are related to 
the lay-out of the structure, design of critical notches, type of 
joints, material selection, surface treatments, manufacturing 
parameters and load spectra in-service. Most recent fatigue design 
rules for steel welded structures [10-11] are based on stress range 
regardless of applied mean stress in order to take into account 
tensile residual stresses, which actual effect depends on their 
magnitude. In this context, most laboratory test specimens 
adopted to generate the fatigue design S-N curves are too small to 
contain very high residual stresses [12]. However, for design and 
fitness purposes of real structures a conservative assumption must 
be done that is tensile residual stresses will be at their highest 
level, that is, of the yield stress magnitude. 

Although the stress range approach to design and fitness-for-
purpose has theoretical basis, few test data have been obtained to 
justify in-service conditions, based on the fact that laboratory 
specimens contain residual stresses whose levels are presented in 
real structures. In this sense, this work presents a practical 
methodology developed to evaluate the fatigue life of seam 
welded joints under combined cyclic loading. This methodology 
will permit, in further studies, the modelling of both stresses, in-

service and residual stresses, acting together, which seem like an 
advantage to engineers and researchers who work in design and 
evaluation of structural components against fatigue failures. 
 
 
1.1 Hot spot approach 

 
According to Fricke [13], there are six welded joint fatigue 

analysis approaches: nominal stress, structural or hot spot stress, 
notch stress, notch intensity, notch strain and crack propagation.  

Hot spot is a term used to refer to the critical point in a 
structure [14]. In this approach, the fatigue strength, expressed as 
an S-N curve, is generally based on strains measured in the 
specimen near the point of crack initiation [15]. 

The structural or hot spot stress is a fictitious value but, for 
plate or shell structures, it corresponds to the sum of membrane 
and bending stress at the weld toe [16], which can be determined 
either by surface extrapolation or inner linearization of the stress 
[13]. Figure 1 presents the model of hot spot adopted in this work.  
 
 

 
 

Fig. 1. Measurement of the hot spot strain range using the linear 
extrapolation method [15] 
 
 

Recently, Bäckström [14], Gustafsson [17] and Sonsino [18] 
analysed fatigue life in tube to plate samples under multiaxial 
load, comparing results obtained in laboratory with design codes, 
such as BS and Eurocode3 [10-11]. 
 
 

2. Methodology  
 
 

2.1 Materials and specimens  
 
The sample geometry selected for the investigation is shown 

in Figure 2.  
The samples were manufactured adopting a tube (545 mm × 

116.4 mm × 9.5 mm), portion of an automotive differential axle, 
which was welded to a plate (250 mm x 250 mm) by means of 
GMAW adopting a heat input of 40.9 kJ/m. Both materials were 
similar to the SAE 1022 steel. Their chemical composition and 
mechanical properties are given in Tables 1 and 2, respectively. 
In Table 2, E, , Sy and Sut mean the Young modulus, Poisson 
ratio, yielding stress and ultimate tensile strength, respectively.   
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1. Introduction 
 

Welding of metals is applied on a very wide scale, especially 
for building up structures by connecting plates and girders of 
different cross sections. Welded joints are unavoidable in many 
modern structural and mechanical components, providing 
different design options for the structures which cannot by simply 
obtained with other manufacturing techniques. For this reason, the 
economic advantages of welded joints have been known for over 
50 years.Residual stresses may be defined as those stresses 
present in a material or structure without external loading, i.e. 
self-equilibrating stresses, a secondary loading. They arise when 
portion of a material or structural component undergo non- 
uniform plastic deformation associated with the manufacturing 
process, loading during the structure assemblage or in-service and 
heat treatments [1]. 

Considerable attention has been given to the residual stresses 
due to welding. Normally, welded joints have their final state of 
residual stresses brought about by the interaction of different 
sources [2-3]. Relatively simple residual stress distribution can be 
expected in a single pass weld if only shrinkage is considered. 
However, variations from this basic pattern occur when phase 
transformations are associated with shrinkage. In such cases, 
material’s volume increases as a result of the austenite 
transformation. Sometimes, a surface quenching due to 
inhomogeneous cooling also contributes to an increase in volume. 
Taking into account the interaction of these different sources, a 
complex residual stress state can appear. 

The influence of residual stresses on the structural integrity of 
mechanical components is largely studied. Tensile residual 
stresses in regions near crack tip may promote brittle fracture, 
fatigue failure and stress corrosion [4-7]. Compressive residual 
stresses, on the other hand, can reduce the buckling in welded 
joints [8] and improve fatigue resistance, by reducing the effective 
tensile stress, increasing the crack closure and, consequently, 
retarding the crack growth [9]. 

Fatigue codes or recommendations exist in almost every 
industrialized country. Structural design approaches are related to 
the lay-out of the structure, design of critical notches, type of 
joints, material selection, surface treatments, manufacturing 
parameters and load spectra in-service. Most recent fatigue design 
rules for steel welded structures [10-11] are based on stress range 
regardless of applied mean stress in order to take into account 
tensile residual stresses, which actual effect depends on their 
magnitude. In this context, most laboratory test specimens 
adopted to generate the fatigue design S-N curves are too small to 
contain very high residual stresses [12]. However, for design and 
fitness purposes of real structures a conservative assumption must 
be done that is tensile residual stresses will be at their highest 
level, that is, of the yield stress magnitude. 

Although the stress range approach to design and fitness-for-
purpose has theoretical basis, few test data have been obtained to 
justify in-service conditions, based on the fact that laboratory 
specimens contain residual stresses whose levels are presented in 
real structures. In this sense, this work presents a practical 
methodology developed to evaluate the fatigue life of seam 
welded joints under combined cyclic loading. This methodology 
will permit, in further studies, the modelling of both stresses, in-

service and residual stresses, acting together, which seem like an 
advantage to engineers and researchers who work in design and 
evaluation of structural components against fatigue failures. 
 
 
1.1 Hot spot approach 

 
According to Fricke [13], there are six welded joint fatigue 

analysis approaches: nominal stress, structural or hot spot stress, 
notch stress, notch intensity, notch strain and crack propagation.  

Hot spot is a term used to refer to the critical point in a 
structure [14]. In this approach, the fatigue strength, expressed as 
an S-N curve, is generally based on strains measured in the 
specimen near the point of crack initiation [15]. 

The structural or hot spot stress is a fictitious value but, for 
plate or shell structures, it corresponds to the sum of membrane 
and bending stress at the weld toe [16], which can be determined 
either by surface extrapolation or inner linearization of the stress 
[13]. Figure 1 presents the model of hot spot adopted in this work.  
 
 

 
 

Fig. 1. Measurement of the hot spot strain range using the linear 
extrapolation method [15] 
 
 

Recently, Bäckström [14], Gustafsson [17] and Sonsino [18] 
analysed fatigue life in tube to plate samples under multiaxial 
load, comparing results obtained in laboratory with design codes, 
such as BS and Eurocode3 [10-11]. 
 
 

2. Methodology  
 
 

2.1 Materials and specimens  
 
The sample geometry selected for the investigation is shown 

in Figure 2.  
The samples were manufactured adopting a tube (545 mm × 

116.4 mm × 9.5 mm), portion of an automotive differential axle, 
which was welded to a plate (250 mm x 250 mm) by means of 
GMAW adopting a heat input of 40.9 kJ/m. Both materials were 
similar to the SAE 1022 steel. Their chemical composition and 
mechanical properties are given in Tables 1 and 2, respectively. 
In Table 2, E, , Sy and Sut mean the Young modulus, Poisson 
ratio, yielding stress and ultimate tensile strength, respectively.   
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necessary to define the proper fatigue life curve from FE-Fatigue 
database or input a specific curve. The present investigation 
adopted the specific curve of the material proposed by Goes and 
co-authors [20]. The curve of the material was fitted from the 
database FAP7 (Fatigue Analysis Program - a program developed 
by ArvinMeritor) and calibrated by testing in fatigue the 
differential axle, in order to obtain a representative curve 
regarding the welded joint under study. For this purpose, the 
deformation x fatigue life curve (  x N) was selected based on the 
possibility to estimate low and high cycle fatigue. Figure 6 
presents the specific curve of the tube concerning the tube-to-
plate sample obtained by fatigue test (correct curve) in 
comparison with the tube (base metal).   

 

 
 

Fig. 5. Location of strain gages on the tube-to-plate sample 

 

 
 
Fig. 6.  x N curves obtained according to FAP7 database (base 
material) and fatigue test (correct curve) 

 
 

2.4 Fatigue tests 
 

Fatigue tests were performed to validate the virtual analysis. 
The tubes-to-plate samples were subjected to torsion and bending 

combined load of 18 kN. The specimens were unloaded after 
crack initiation detected by liquid penetrant testing. Figure 7 
shows the fatigue tests conducted by Goes [21]. The test 
equipment consisted of a linear hydraulic actuator (± 100 kN) 
with a device applying the complete reverse load (R = -1) and a 
frequency of 2.0 Hz, both controlled by the MTS control system 
407.  

 
a) 

 
 

b)

 
 

Fig. 7. Fatigue test (a) and detail of the test equipment (b) 
 

 
3. Results and discussion 

 
 

3.1 FEA  
 

The equivalent stress is widely adopted for stress calculation 
in welded joints, on the basis that considers the effects of torsion, 
bending and shear to which the joint is subjected. The equivalent 
stress distribution for the loading of 18 kN is shown in Figure 8. 
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necessary to define the proper fatigue life curve from FE-Fatigue 
database or input a specific curve. The present investigation 
adopted the specific curve of the material proposed by Goes and 
co-authors [20]. The curve of the material was fitted from the 
database FAP7 (Fatigue Analysis Program - a program developed 
by ArvinMeritor) and calibrated by testing in fatigue the 
differential axle, in order to obtain a representative curve 
regarding the welded joint under study. For this purpose, the 
deformation x fatigue life curve (  x N) was selected based on the 
possibility to estimate low and high cycle fatigue. Figure 6 
presents the specific curve of the tube concerning the tube-to-
plate sample obtained by fatigue test (correct curve) in 
comparison with the tube (base metal).   

 

 
 

Fig. 5. Location of strain gages on the tube-to-plate sample 

 

 
 
Fig. 6.  x N curves obtained according to FAP7 database (base 
material) and fatigue test (correct curve) 

 
 

2.4 Fatigue tests 
 

Fatigue tests were performed to validate the virtual analysis. 
The tubes-to-plate samples were subjected to torsion and bending 

combined load of 18 kN. The specimens were unloaded after 
crack initiation detected by liquid penetrant testing. Figure 7 
shows the fatigue tests conducted by Goes [21]. The test 
equipment consisted of a linear hydraulic actuator (± 100 kN) 
with a device applying the complete reverse load (R = -1) and a 
frequency of 2.0 Hz, both controlled by the MTS control system 
407.  
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b)

 
 

Fig. 7. Fatigue test (a) and detail of the test equipment (b) 
 

 
3. Results and discussion 

 
 

3.1 FEA  
 

The equivalent stress is widely adopted for stress calculation 
in welded joints, on the basis that considers the effects of torsion, 
bending and shear to which the joint is subjected. The equivalent 
stress distribution for the loading of 18 kN is shown in Figure 8. 
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Fig. 9. Fatigue life distribution by FE-Fatigue (a) and detailed in 
the critical region (b) 
 

 
 

Fig. 10. Fatigue crack detection during the tests in laboratory 
 
 
3.7 Fatigue life comparison 
 

Tables 8 and 9 summarize the fatigue life concerning the 
stress approaches and fatigue codes.  

Table 8. 
Fatigue life (cycles) according to calculated hot spot stresses 

FE-Fatigue BS7608 Eurocode 3 
235.4 x 103 459 x 103 429 x 103 

 
Table 9. 
Fatigue life (cycles) according to experimental hot spot stresses 

Experimental BS7608 Eurocode 3 
204.5 x 103 469 x 103 545 x 103 

 
The laboratory test results presented considerable variation 

that can be attributed to the weld process, residual stresses not 
considered in the analysis and to samples number. 
 
 

4. Conclusions  
 

The objective of this paper is to present a practical 
methodology developed to evaluate the fatigue life of seam 
welded joints under combined cyclic loading. Fatigue analysis 
was conducted in virtual environment and then compared with 
fatigue test results. The virtual durability analysis result was 
calibrated based on these laboratory tests and design codes. 
Regarding the study described herein, the following conclusions 
can be drawn: 
 The FE model was validated due to results obtained in fatigue 

tests. The stress results presented upper value due to the 
approach used that considered the fillet weld supported all 
work. The model presented a good representation of failure 
and load correlation. 

 The model presented in this work is practical and robust to 
develop combined load fatigue test and reproduced field 
issues. 

 Integrating fatigue analysis and finite elements, it is possible 
to analyse several welded joint configurations in the design 
phase, providing development time and cost reduction, 
increasing the project reliability. 
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