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Abstract
Purpose: of this paper is the analysis of vibrating beam by the exact and approximate methods and creating the 
hypergraphs of the beam concerning of two methods of analysis.
Design/methodology/approach: was to nominate the relevance or irrelevance between the characteristics 
obtained by considered methods - especially concerning the relevance of the natural frequencies-poles of beams 
characteristics. The main subject of the research is to solve the continuous free-pinned (F-P) and clamped-sliding 
(C-S) beams as a subsystems of vibrating beam-system.
Findings: this approach is a fact, that approximate solutions fulfill all conditions for vibrating beams and can 
be introduction to synthesis of these systems  modeled by hypergraphs.
Research limitations/implications: is that linear continuous transverse vibrating (F-P) and (C-S) beams are 
considered.
Practical implications: of this study is the main point is the introduction to synthesis of transverse vibrating 
continuous beam-systems.
Originality/value: of this approach considers the application Galerkin’s method which concerns the analysis of 
beams and modeling them of transformed hypergraphs.
Keywords: Applied mechanics; Exact and approximate methods; Continuous system; Vibrating beams

Reference to this paper should be given in the following way: 
A. Buchacz, Hypergraphs of simple beams-models of their analysis in synthesis of complex beam-systems, 
Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 233-242. 

 
 

1. Introduction 
 
In the Gliwice Research Centre the different problems of 

different models of vibrating beam systems analyzed by the 
structural numbers methods modelled by means of the graphs and 
hypergraphs (Other diverse problems have been modeled by 
different kind of graphs next they were examined and analyzed in 
(e.g. [8-16]). The problems of synthesis of electrical systems [1] 

and of selected class of continuous, discrete - continuous discrete 
mechanical systems and active mechanical systems concerning 
the frequency spectrum has been made (e.g. [12-19])). have been 
solved (e.g.[3-7,12,15,16]). The discrete- continuous torsionally 
[9] and flexibly vibrating mechanical and mechatronic systems 
were considered [10-13]. To comparison of dynamical dynamical 
flexibilities only for mechanical torsionally vibrating bar and 
flexibly vibrating beam, as a parts of complex mechatronic 
systems, exact method and Galerkin’s method were used [9-16]. 
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In this paper frequency - modal analysis with the both methods 
has been used to obtain the frequency-modal characteristics. The 
problems, have been presented for the flexibly vibrating pinned - 
free and clamped - sliding beams.  
 
 

2. Hypergraphs as models of simply 
beams - subsystems of flexibly 
vibration system

 
The couple 
 

XX,X= kk
21 . (1) 

 
is called a hypergraph [2], where: X1  - finite set of vertices and 
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the family Xk
2  is called a hypergraph over X1  as well, and 
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Hypergraphs Xk
 have been shown in their geometrical 

representation on plane. Xk
2  - hyperedges or blocks - have been 

marked as two-dimensional continuum with enhanced vertices, in 
the shape of circles. Hypergraphs or graphs of category k - Xk

 
(k=2,3) are used in this paper (see [2-6,12,15,16]). 

For the considered boundary conditions generalized 

displacements - deflections 11s  and slopes 31s  correspond to its 
extreme points (Fig. 1). These general displacements are 
measured in the inertial system of reference. Moreover, the origin 
of the inertial system of reference has generalized coordinate 

001s  assigned to it. 
 

Making mutually one-to-one transformation imitation 
 

XSf: 11 . (3) 
 

in this way, that  
 

,xsf jj 11 . (4) 
 

where: 
,Xx,Ss jj 1111 ,Xx,Ss jj 1111  j =0,1,3.   

 
The three-vertex hypergraphs as a models of one of end of 

flexibly vibrating beams is obtained 

, fXX
   f
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where: Xk
2 - one-element family - five-element subset of vertices 
X1 . 

 
Graphical representation of transformations (3) by the way of 

(4) for the different boundary conditions is shown in Fig. 1.  
In the case of flexibly vibrating of the beam (i) (Fig. 2a) with 

combinations of boundary conditions (Fig. 1a - left end and 1c - 
right one) and constant cross-section and constant flexibly rigidity 

)(iEI (where )( iE - Young's modulus of the beam, 
)(iI  - polar 

moment of inertia of cross-section of the beam) as well as length 
)(il has been considerd. So a set of the generalized displacements 

of a flexibly vibrating beam can be formulated in form: 
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41
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Making mutually one-to-one transformation imitation in form 
of (3) and (4) the five-vertex hypergraph (Fig. 2b) as a model of 
flexibly vibrating beam with constant cross-section is obtained 
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Graphical representation of transformations (3) by the way of 

(4) in case of the flexibly vibrating beam with constant cross-
section is shown in Fig. 2.  

 
The couple  
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is called weighted hypergraph (The weighted hypergraphs (in this 
paper called also weighted block graphs or weighted graphs of 
category k) have been applied to modelling of the mechanical 
systems considered. Definitions of graphs, as mathematical 
objects, have been presented on the basis of the literature [2]. The 
bibliography of this subject is very extensive and regards the 
theory as well as its applications (see [1,3-10,12-17,20,21]))
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Fig. 1. Differrent boundary coonditions of subs
 

systems of beamm system and theeir hypergraphs  
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The graph
)(

1

2 iX
 as graphical representation of sentence (8) is 

shown in Fig. 3.  
In the example of beam with boundary conditions presented in 

Fig. 1b and 1d the set of generalized displacements is following: 
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(8) weighted hypergraph 
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is obtained (Fig. 5).  

 
 

3. Models and characteristics of Simply 
vibration beams - subsystems of beam-
system

3.1. Frequency - modal analysis of the 
subsystem of beam system 

The subsystem of mechatronic system, that is the beam (The 
mechatronic system was considered for example in [8-10]), 

extorted with harmonic force in form 0( ) sinP t P t was 
considered in (e.g. [11]).  

At first in the global case the equation of motion of the beam 
is considered   
 

0),(),( '' ttxxxx txFytxEIy ,   (9) 
 

where: ( , )y x t - deflection at the time moment t of the lining beam 
section within the distance x from the beginning of the system, E - 
Young modulus,  - mass density of material of the beam, I -
polar inertia moment of the beam cross section, F - area of the 
beam cross section.  
 

The boundary conditions subsystem of beam system are 
known and suitably equal in case for:  

 
free end (Fig. 1a) 
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,0),0(,0),0( , tyty x   (11) 

 
pinned end (Fig. 1c) 

,0),0(,0),0( , tyty xx  (12) 
sliding end  

.0),0(,0),0( ,, tyty xxxx  (13) 

kxAkxAkxAkxAxX coshsinhcossin)( 4321 . (14) 
 

After substitution of (9) into combinations of boundary 
conditions (10-13) was received  
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where W - main determinant of set of equation (for 

example [8-14]), 
TAA 41 ,...,A .  

 
After comparing the characteristic determinant of set (15) to 

zero  
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own values are obtain.  
 

Own functions after relationships between constants 1A
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The conditions (19-22) we should write for the second end of 
beam that then, when x=l. After this operations the general 
solution of own functions has the form. 
 

3.2. The exact method of determining of 
dynamical flexibility 

The solution of equation (9) is the harmonic function in form 
of  
 

( , ) ( )siny x t X x t . (23) 

 

a)          b) 

 
 

Fig. 2. Hypergraph (b) of model of flexibly vibrating beam (a) as graphical representation of transformations (3) and (4) 

 
         b) 

 
 

Fig. 3. Hypergraphs of flexibly vibrating beam as representation of transformation (8) 
 

a)          b) 

 
 

Fig. 4. Hypergraph (b) of model of flexibly vibrating beam (a) as graphical representation of transformations (3) and (4) 
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a)          b) 

 
 

Fig. 5. Hypergraphs of flexibly vibrating beam as representation of transformation (8) 
 
Determining suitable derivatives of (23) and substituting them 

into boundary conditions the set of equations, after 
transformations, was obtained in matrix form as 
 

,FWA     (24) 
 
where: W , A , F  - the matrices depended from one of the 
boundary conditions of elementary beam.  
 

To qualify constants 1A , …, 4A , we should count 
combinations of following determinants (e.g. [8-14]).  
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 The constants 1A , … , 4A  on the base of combination of (10)-
(13) and [for x=l and x=l], and regard  
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Substituting expression (25) and (26) to (14) and taking into 
account (10) deflection beam is   
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According to definition of dynamic flexibility, on the basis of 
(24), it takes form  
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The transients of absolute value of dynamical flexibility (28) 

where x=l, for combinations of boundary conditions, and that is 
suitable for F-P (Fig. 2a) and C-S (Fig. 4a) in Fig. 6.  

3.3. Galerkin’s method of calculation of the 
dynamical flexibility of the beam 
 
 

It has to be considered that if the shaft is under the action of 
moment with continuous factorization threw the beam length with 
the value ( )sinF x t  on the length unit - then the equation of 
motion of the element with length dx lining in the point x is:  
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To determine the dynamic flexibility of the factors, which are 

compatible to concentrate loading sinF t , which works in point z 
have to be found. The loading can be considered as a limit of 
concentrate loading threw the length- as follows:  
 

when  
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0 in other section, 

F z h x z,
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and the equation (29) takes form of  
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and the equation (29) takes form of  
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Using approximate method - Galerkin’s one the solution of 

equation (32) is given in form  
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Substituting the following derivatives of (33) to (32), the 
amplitude value 
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Using the equation (34) and putting it to (33) the dynamical 
flexibility equals  
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The absolute value of dynamical flexibility at the end of the 

beam, i.e. when x=l takes the following form  
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In general case the dynamical flexibility at the arbitrary point 
of the beam gets shape of  
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For sum k=0,1,2,3 the plot of absolute value of dynamical 

flexibility defined by expression (37) for combinations of 
boundary conditions, that means suitably F-P (Fig. 6) and C-S in 
(Fig. 7).  

On the base of, for presented Galerkin’s transformation the 
five-vertex hypergraphs (Figs. 8a and 9a) into three-vertex block 
graph (Figs. 8b,c and 9b,c) will be applied.  

In the case of synthesis of n-segment model of the system, 
composed of subsystems with constant section, vibrating flexibly, 
it is modelled by the loaded graph of the third category - after 
Galerkin’s transformation - with n three-vertices-blocks, 
connected to those vertices to which the corresponding 
generalized coordinates are assigned (see i.e. [4,12,15,16]).  

In the problem of synthesis are used subgraphs of k category  
graphs according to (8), generalized coordinates to the vertices of 

complete graph f  
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dynamical flexibilities to edges of this graph: 
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is a weighted Lagrange’s skeleton. 

Geometrical representation of graph     
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 is shown in [4,5]. 
For a weighted Lagrange skeleton, taken into consideration in 

(8), it can be noted that (see [4,5]):  
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Fig. 6. The plot of absolute value of dynamical flexibility of the sum for n=1, 2, 3 mode vibration for the system from Fig. 2a  
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Fig. 5. Hypergraphs of flexibly vibrating beam as representation of transformation (8) 
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have to be found. The loading can be considered as a limit of 
concentrate loading threw the length- as follows:  
 

when  
( )

0 in other section, 

F z h x z,
hF x

    (30) 
 
and the equation (29) takes form of  

 
tPAyEIy ttxxxx sin0'' ,    (31) 

 
and the equation (29) takes form of  
 

tPAyEIy ttxxxx sin0'' ,    (32) 

where: h
FP0 .  

 
Using approximate method - Galerkin’s one the solution of 

equation (32) is given in form  
 

1

)(

1

sin),(),(),(
n

n

n
n txkfAtxytxy

.    (33)

 
 

Substituting the following derivatives of (33) to (32), the 
amplitude value 

)(nA - after transformations - of the vibrations 
takes form of  
 

),,(0
)( kafPA n

.    (34) 
 

where: F
EIa

.  
 

Using the equation (34) and putting it to (33) the dynamical 
flexibility equals  
 

),,,,()( lxkafY n
xl .    (35) 

 
The absolute value of dynamical flexibility at the end of the 

beam, i.e. when x=l takes the following form  
 

).,,,()()( lkafY n
ll

l
Y .    (36) 

In general case the dynamical flexibility at the arbitrary point 
of the beam gets shape of  

 

1

)(

n

n
xlxl YY

.    (37) 
 
For sum k=0,1,2,3 the plot of absolute value of dynamical 

flexibility defined by expression (37) for combinations of 
boundary conditions, that means suitably F-P (Fig. 6) and C-S in 
(Fig. 7).  

On the base of, for presented Galerkin’s transformation the 
five-vertex hypergraphs (Figs. 8a and 9a) into three-vertex block 
graph (Figs. 8b,c and 9b,c) will be applied.  

In the case of synthesis of n-segment model of the system, 
composed of subsystems with constant section, vibrating flexibly, 
it is modelled by the loaded graph of the third category - after 
Galerkin’s transformation - with n three-vertices-blocks, 
connected to those vertices to which the corresponding 
generalized coordinates are assigned (see i.e. [4,12,15,16]).  

In the problem of synthesis are used subgraphs of k category  
graphs according to (8), generalized coordinates to the vertices of 

complete graph f  

i
ZX )(2

 of hypergraph f  

iX )(2

 and assigning by 2f  
dynamical flexibilities to edges of this graph: 

 
)(

12
)(

22
)(

11
)(

21
)(

01
)(

21
)(

01
)(

11
)(

012
iiiiiiiii Y, Y, Yx, x, x, x, x, xf , (38) 

 
a complete-substitute weighted graph is obtained: 
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is a weighted Lagrange’s skeleton. 

Geometrical representation of graph     

iX
12

)(
0

2

 is shown in [4,5]. 
For a weighted Lagrange skeleton, taken into consideration in 

(8), it can be noted that (see [4,5]):  
 

,ssss i
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i
j

ii
j
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1

)(
1

)(
01
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1 0

   (j = 1,2).    (40) 
 
 

 
 

Fig. 6. The plot of absolute value of dynamical flexibility of the sum for n=1, 2, 3 mode vibration for the system from Fig. 2a  

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper240

Journal of Achievements in Materials and Manufacturing Engineering

A. Buchacz

Volume 49 Issue 2 December 2011

 

 
 

Fig. 7. The plot of absolute value of dynamical flexibility of the sum for n=1, 2, 3 mode vibration for the system from Fig. 4a  
 
         b) 

 
 

Fig. 8. The illustration of transformation of the five-vertex hypergraph into three-vertex one as effect of use of Galerkin’s method 
 

         b) 

 
 

Fig. 9. The illustration of transformation of the five-vertex hypergraph into three-vertex one as effect of use of Galerkin’s method 

 
 

Considering (38), (39) and the definition of dynamical 
flexibility [4,5], weighted Lagrange skeleton may be treated as 

oriented polar graph 00

)(iX
. 

 
It is not difficult to notice that making the assignment 3f  to 

the edges of weighted Lagrange skeleton 12
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2 iX
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a polar graph is obtained  
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Moreover in the case of oriented polar graph 00

)(iX
, polar 

equation [4,5] can be formulated as: 
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Graphical representation of these subgraphs are shown in  
[3-8,12,15,16].  

In the case of synthesis of n-segment model of the system, 
composed of subsystems with constant section, transverse 
vibrating, it is modeled by the loaded graph of the second 
category with n three-vertices-blocks, connected to those vertices 
to which the corresponding generalized coordinates are assigned 
(see i.e. [5]).  

The use of a weighted hypergraph and its subgraphs (as a 
model of flexibly vibrating system) in this way may provide the 
basis for the formalization which is the necessary condition of 
discretization of the considered class of continuous mechanical 
systems. 

 
 

4. Last remark 
 

On the base of the obtained formulas, which were determined 
by the exact method and approximate one, it is possible to make 
the synthesis of the considered class vibrating mechanical 
systems. Moreover the others of boundary conditions of 
mechanical subsystems of complex mechanical or mechatronic 
systems that means the beam it is necessary to achieve offered 
researches in this paper. These problems shall be discussed in 
future research works.  
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