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AbstrAct
Purpose: of this paper: The effectiveness of computer tomography algorithms applied for reconstructing the 
internal structure of objects containing the non-transparent elements is discussed, in conditions of the incomplete 
information about the examined object.
Design/methodology/approach: Problem of the internal structure examination of an object with non-transparent 
elements, without its destruction, is considered   by means of the classical and non-classical algebraic algorithms 
of computer tomography used in standard approaches and in cases of incomplete projection data.
Findings: Computer tomography algorithms, known from literature and designed by the authors, are tested in 
solving the problems of reconstructing the discrete objects of high contrast with non-transparent elements, with 
regard to their precision, convergence and utility. Carried out research indicate that the chaotic algorithms are 
more efficient, for the same values of parameters, in comparison with the corresponding classical algorithms.
Practical implications: Problems considered in the paper can arise in some technical issues, for example, in 
exploring the coal interlayers in looking for the compressed gas reservoirs which can be dangerous for the 
people’s life and health, in which application of the standard algorithms of computer tomography is impossible 
for some reasons (like size of the examined object, its localization or its accessibility).
Originality/value: In the paper the originally designed by the authors reconstruction algorithms are presented 
which appear to be more effective than the standard algebraic algorithms adapted for solving problems with the 
incomplete projection data.
Keywords: Numerical techniques; Computer tomography; Parallel algorithms; Chaotic algorithms
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1. Introduction 
 

Methods of computer tomography can be used, not only in 
medicine but also in wide class of technical problems, in every case 
when the examination of internal structure of an object, without its 
destruction, is needed.  Computer tomography algorithms can be 
divided into two groups: analytic and algebraic algorithms. In this 
elaboration we will consider the algebraic algorithms only.  

Let f(x,y) be a function representing the spatial distribution of 
some physical parameter. Then, as a projection we define the line 
integral: 
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L
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where L is an interval in the plane connecting the source of beam 
radiation with the detector. The projection is usually obtained 
from real physical measurements. 
 

From mathematical point of view the problem of 
reconstructing the object from projections consists in finding an 
unknown function f(x,y) by means of a given set of projections pL
for all L. It is theoretically possible to reconstruct the function 
f(x,y) from the set pL by means of the Radon inversion formula 
[20]. However, in practice only a discrete set of projection data 
for a limited  number of rays is given. Moreover, since the 
projection data are obtained by real physical measurements, they 
are perturbed by the random errors. Another problem is that in 
many practical applications the projection data may not be 
available at each direction and its number may be very limited. In 
this case we say that we have a reconstruction problem with 
incomplete projection data. In particular, such kind of problems 
arises in mineral industries and engineering geophysics connected 
with acid mine drainage, the stability of mine workers, mineral 
exploration and others [1,2]. Next problem which can appear in 
practical situations is the presence of the non-transparent elements 
in examined objects. In mining industry the non-transparent 
elements could be, for example, the objects lying in the coal 
interlayer and having strictly higher capacity than coal to absorb 
energy, as well as stones or compressed gas, usually present in 
coal interlayer. With all the mentioned problems, with reference 
to computer tomography, will we deal in the current paper.   

Let us notice that the energy lost by the given ray is equal to 
the sum of energies lost in the particular pixels occurring in the 
trajectory of this ray, and that every pixel absorbs the portion of 
energy which is proportional to the value of function f in this 
pixel and to the length of path passed by the ray to this pixel. 
Values of the absorption coefficients are unknown, whereas 
regions of the intersections of rays and pixels can be determined 
by knowing the discretization density and the equations of lines 
containing those rays. There are also known the initial and 
terminal values of the rays energies, so difference between them 
in consequence, which means that all of the projection values are 
known. Those pieces of information give the basis for formulating 
the system of linear equations. Problem of computer tomography, 
determined in this way, consists in solving the following system 
of linear equations: 

pxA , (2) 
 
where: 
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- vector of unknown elements; 
m

mppp Rp ),...,,( 21
- vector of projection. 

 
Method of solution of the above system of equations is 

equivalent to the considered algebraic algorithms. In the next two 
sections the approaches appropriate for the classical and non-
classical algebraic algorithms of computer tomography will be 
presented. 

More detailed description of the considered problem with the 
figures explaining the essence of the problem can be found 
in [13,17].   
 
 

2. Classical algorithms
We consider the system (2) of algebraic linear equations, 

constructed in the way described in the previous section. For 
solving this problem we describe three approaches corresponding 
with three algorithms [3,4]. 
 
 
2.1. ART algorithm 

We will use the following notations: 
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where ia  is the i-th row of the matrix A,  0< <2 denotes the 
relaxation parameter and I refers to the identity matrix. Then we 
proceed in the following way: 
 
1. nRx )0( is an arbitrary vector; 
 
2. (k+1)-th vector is received by the formula: 
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where k
iP  is an operator defined by means of (4), k denotes 

the relaxation parameter and i(k)=k(mod m)+1.  
 

The convergence conditions of  the ART algorithm are proved 
in [5]. 
 
 
2.2. ART-3 algorithm 
 
Let us denote: 
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where: 
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and 
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where ia  is the i-th row of the matrix A, 0<ω<2 denotes the 
relaxation parameter and I refers to the identity matrix. Then we 
make the following steps: 
 
1. nRx )0( is an arbitrary vector; 
 
2. (k+1)-th vector is received by the formula: 
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where k

iP is an operator defined by means of relations (6) and 

(8), ωk denotes the relaxation parameter and i(k)=k(mod m)+1. 
In this case, vector ),...,,( 21 me  refers to the vector of errors 
which noise the projections p. Then, instead of solving the system 
of equations (2) we solve the system of inequalities of the form: 
 

.epxAep  
 
 
2.3. MART algorithm 
 

The MART algorithm is the multiplicative algorithm, on 
opposite to the ART and ART-3 algorithms which are additive. 
The MART algorithm can be presented in following iterative 
form: 
 
1. 0< nRx )0( is an arbitrary vector; 
 
2. (k+1)-th vector is received by the formula: 
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where ia  is the i-th row of the matrix A, λ denotes the relaxation 
parameter and i=k(mod m)+1. 
 
 

In this algorithm the relaxation algorithm can be constant or 
variable and convergence of this algorithm is determined by 
theorem presented in [13]. According to this theorem, if the 
system of equations (2) is not contradictory and for each i, j, k the 

inequality 10 ij

i

k a is true, then the sequence of (10) 

converges to the solution of the system (2).  

3. Non-classical algorithms 
 

Algorithms ART, ART-3 and MART are useful in solving the 
standard problems as well as in considering the problems of 
incomplete projection data. However, in cases of the significant 
limitation of data the convergence of the above algorithms 
becomes slow. In this section we present some known algorithms 
and we introduce algorithms designed by the authors for the 
purpose of speeding up the reconstruction of the examined 
objects. In the previous considerations, the selection order of the 
equations in the successive iterations of the algorithms was 
always the same. It turns out that the order of selection can have a 
big influence for the speed of algorithm convergence. This 
conclusion has been taken into account in the asynchronous 
algorithms, which include the chaotic algorithms [12]. Another 
approach for increasing the running speed of the algorithm 
consists in introducing the special type of parallel algorithms and 
implementing them in the parallel computing systems [6,8,11]. 
Such kind of process happens by including, in the operation of 
solving the system of equations, some group of processors 
working independently and simultaneously, which can 
significantly reduce the time of determining single iteration. 
Group of algorithms realising this idea are the block-parallel 
algorithms. There are two ways of obtaining the parallelism in the 
algorithm. First approach is the following: the matrix of 
coefficients is divided into blocks and every block corresponds 
with one processor, which uses only the rows of matrix contained 
in this particular block and generates the partial solution. In the 
next step, the central processor averages the solutions which ends 
the iteration. Another way for receiving parallelism of the 
algorithm starts similarly, in dividing the coefficient matrix into 
blocks corresponding with the processors working independently 
and simultaneously, but the operations into every single block are 
executed sequentially. Every successive solution is received as the 
averaged value of solutions of all blocks. 
 
 
3.1. Iterative-block algorithms 

In practical realization of the parallel algorithms a big number 
of local processors in the parallel computing structures is 
required. For the purpose of reducing the number of required local 
processors we will consider the iterative-block algorithms [10]. 

Let the matrix A and the projection vector p be decomposed 
into M subsets according to the condition: 
 

,...},...,2,1{ 21 MHHHm  (11) 
 
where },...,2,1{ m  is the set of indices of the matrix rows and: 
 

},...,2,1{ 11 tttt mmmH  (12) 
 
for mmmm s...0 10 .  
 

In the iterative-block algorithm SZB-3, designed by the 
authors, there are the following steps: 
1. nRx )0( is an arbitrary vector; 

1.  Introduction

2.  classical algorithms 
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2. (k+1)-th vector is received in accordance of the formula: 
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where t(k) = k(mod M) +1, k
iP is an operator defined with the 

aid of formulas (6) and (8), 20 k denotes the relaxation 
coefficient, C is the constraining operator (defined in section 3.3) 
and k

iB  describes the matrix of dimension nn , with the 
nonnegative elements of the form: 
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3.2. Parallel-block algorithms 
 

In the previously considered algorithms the parallel work is 
executed in every block, whereas the blocks are connected 
sequentially. In the algorithms presented in this section, 
operations are executed sequentially in blocks, while the blocks 
work simultaneously.  

Let us decompose the matrix A and the projection vector p
into blocks, according to the formulas (10) and (11). For every 
block Hi we introduce an operator, denoted by Qi, defined by 
composing the operators ,,...,,

111 imimim
PPP  determined by the 

conditions (6) and (8), indices of which belong to the block Hi: 
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The parallel-block algorithm RB-3, introduced by the authors, 
runs as follows: 
 
1. nRx )0( is an arbitrary vector; 

 

2. (k+1)-th vector is received by the formula: 
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Qi is an operator described by formula (15) and Bi refers to the 
matrix of dimension nn  with the nonnegative elements of the 
form: 
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3.3. Chaotic algorithms 
 

The asynchronous algorithms are based on the methods of 
asynchronous iterations proposed under the name "random 
relaxations" by D.Chazan and W.Miranker [9], and further 
developed by G.M.Baudet [7] and M.N.El Tarazi [19] who 
introduced a visual model for the class of asynchronous 
algorithms and obtained the first correct conditions of 
convergence in the nonlinear case for contracting operators.  

The following definitions will be used. 
 

Definition A sequence of nonempty subsets 
0kkII  of the 

set {1,2…, m} is a sequence of chaotic sets if 
},...,2,1{suplim mI j

j

. (In other words, if each integer 

},...,2,1{ mj  appears in this sequence infinite number of 
times). 
 
Definition If each subset Ik of the sequence of chaotic sets 

0kkII  consists of only one element, then such sequence is 
called acceptable. 
 

Definition A sequence 1)( kkJ  of m-dimensional vectors 

))(),...,(),(()( 21 kkkk m  with the integer coordinates, 
satisfying the following conditions:  
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for each mi ,...,2,1  and Nk , is called a sequence of delays.  
 

Let m
iiTT 1}{  be a set of nonlinear operators, acting in the 

Euclidean space Rn and let S be an algorithmic operator. We will 
consider the following iterative process: 
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where x denotes an n-dimensional vector of the space Rn and 
i {1,2,...,m}, for every k = 0,1,2,.... Then we can formulate one 
more definition. 

Definition Let Ti: Rn Rn, },...,2,1{ mi  be a set of nonlinear 
operators and let nRx )0(  be an initial value of the vector x. A 
generalized model of the asynchronous iterations with limited 
delays for the set of operators Ti, i=1,2,...,m, is a method of 

building the sequence of vectors 0k
kx , which is given 

recursively by the following scheme: 
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where 

1kkII  is a sequence of chaotic sets such that 

},...,2,1{ mIk  and 1)( k
i

i kJ  refer to the sequences of 
limited delays, for i=1,2,...,m. 
 

Algorithm CHART-3 proceeds according to the following 
steps:   
 
1. nRx )0( is an arbitrary vector; 

 
2. k+1-th iteration is calculated in accordance with following 

scheme: 
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where k

iP are the operators defined by means of (6) and (8), k  

denote the relaxation parameters with property 0< k <2, k
i are 

the positive real numbers with property: 
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for each Nk , 1kkII   is the acceptable sequence of 
chaotic sets such that },...,2,1{ mIk and, finally, C is the 
constraining operator. In this paper we consider such C=C1 C2 C3,
where: 
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3.4. Chaotic-block algorithms 

 
The chaotic and block algorithms, presented in previous 

sections, can be combined together by forming the chaotic-block 
algorithms.  

New introduced algorithm CHRB-3 runs as follows:  
 
1. nRx )0( is an arbitrary vector; 
2. k+1-th iteration is calculated in accordance with the following 

scheme: 
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in which the following notation is used: 
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where iP  refer to the operators defined by relations (6) and (8), 

symbol 20  describes the relaxation parameters, C is the 

constraining operator, 
1)( kkiII  denotes the sequence of 

chaotic sets such that )(kiI {mi-1+1, mi-1+2,…, mi }=Hi and 

k
iB  are the matrices of dimension nn , with real nonnegative 

elements which satisfy conditions (18) and (19), for each k  N. 
 
 

4.  Computer simulation and 
experimental results 
 
 
4.1. Problem of the incomplete information 

Main of the image reconstruction schemes, depending on 
system of projections, are parallel and beam schemes are located 
in the two-dimensional space. In some practical engineering 
problems, for some important reasons (such as localization, size 
or limited access to the investigated object), impossible is to get 
projections from all the directions Such situation arises, for 
example, in the coal bed working. In the coal bed, during the 
preparation process, the access to longwalls may be very difficult 
or impossible at all, in dependence on the method of coal mining. 
Sometimes it is impossible to access to one or two sides of 
longwalls, and sometimes it is only impossible to access to the 

3.2.  Parallel-block algorithms

3.3.  chaotic algorithms
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where t(k) = k(mod M) +1, k
iP is an operator defined with the 

aid of formulas (6) and (8), 20 k denotes the relaxation 
coefficient, C is the constraining operator (defined in section 3.3) 
and k

iB  describes the matrix of dimension nn , with the 
nonnegative elements of the form: 
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3.2. Parallel-block algorithms 
 

In the previously considered algorithms the parallel work is 
executed in every block, whereas the blocks are connected 
sequentially. In the algorithms presented in this section, 
operations are executed sequentially in blocks, while the blocks 
work simultaneously.  

Let us decompose the matrix A and the projection vector p
into blocks, according to the formulas (10) and (11). For every 
block Hi we introduce an operator, denoted by Qi, defined by 
composing the operators ,,...,,

111 imimim
PPP  determined by the 

conditions (6) and (8), indices of which belong to the block Hi: 
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The parallel-block algorithm RB-3, introduced by the authors, 
runs as follows: 
 
1. nRx )0( is an arbitrary vector; 

 

2. (k+1)-th vector is received by the formula: 
 

,,1

1

1 ik
M

i
i

)(k yBx  (17) 

 
where: 
 

,)(,1 k
i

ik xQy  (18) 
 
Qi is an operator described by formula (15) and Bi refers to the 
matrix of dimension nn  with the nonnegative elements of the 
form: 
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for Mi ,...,2,1   and .,...,2,1 np  
 
 
3.3. Chaotic algorithms 
 

The asynchronous algorithms are based on the methods of 
asynchronous iterations proposed under the name "random 
relaxations" by D.Chazan and W.Miranker [9], and further 
developed by G.M.Baudet [7] and M.N.El Tarazi [19] who 
introduced a visual model for the class of asynchronous 
algorithms and obtained the first correct conditions of 
convergence in the nonlinear case for contracting operators.  

The following definitions will be used. 
 

Definition A sequence of nonempty subsets 
0kkII  of the 

set {1,2…, m} is a sequence of chaotic sets if 
},...,2,1{suplim mI j

j

. (In other words, if each integer 

},...,2,1{ mj  appears in this sequence infinite number of 
times). 
 
Definition If each subset Ik of the sequence of chaotic sets 

0kkII  consists of only one element, then such sequence is 
called acceptable. 
 

Definition A sequence 1)( kkJ  of m-dimensional vectors 

))(),...,(),(()( 21 kkkk m  with the integer coordinates, 
satisfying the following conditions:  
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for each mi ,...,2,1  and Nk , is called a sequence of delays.  
 

Let m
iiTT 1}{  be a set of nonlinear operators, acting in the 

Euclidean space Rn and let S be an algorithmic operator. We will 
consider the following iterative process: 
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where x denotes an n-dimensional vector of the space Rn and 
i {1,2,...,m}, for every k = 0,1,2,.... Then we can formulate one 
more definition. 

Definition Let Ti: Rn Rn, },...,2,1{ mi  be a set of nonlinear 
operators and let nRx )0(  be an initial value of the vector x. A 
generalized model of the asynchronous iterations with limited 
delays for the set of operators Ti, i=1,2,...,m, is a method of 

building the sequence of vectors 0k
kx , which is given 

recursively by the following scheme: 
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where 

1kkII  is a sequence of chaotic sets such that 

},...,2,1{ mIk  and 1)( k
i

i kJ  refer to the sequences of 
limited delays, for i=1,2,...,m. 
 

Algorithm CHART-3 proceeds according to the following 
steps:   
 
1. nRx )0( is an arbitrary vector; 

 
2. k+1-th iteration is calculated in accordance with following 

scheme: 
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where k

iP are the operators defined by means of (6) and (8), k  

denote the relaxation parameters with property 0< k <2, k
i are 

the positive real numbers with property: 
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for each Nk , 1kkII   is the acceptable sequence of 
chaotic sets such that },...,2,1{ mIk and, finally, C is the 
constraining operator. In this paper we consider such C=C1 C2 C3,
where: 
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3.4. Chaotic-block algorithms 

 
The chaotic and block algorithms, presented in previous 

sections, can be combined together by forming the chaotic-block 
algorithms.  

New introduced algorithm CHRB-3 runs as follows:  
 
1. nRx )0( is an arbitrary vector; 
2. k+1-th iteration is calculated in accordance with the following 

scheme: 
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in which the following notation is used: 
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where iP  refer to the operators defined by relations (6) and (8), 

symbol 20  describes the relaxation parameters, C is the 

constraining operator, 
1)( kkiII  denotes the sequence of 

chaotic sets such that )(kiI {mi-1+1, mi-1+2,…, mi }=Hi and 

k
iB  are the matrices of dimension nn , with real nonnegative 

elements which satisfy conditions (18) and (19), for each k  N. 
 
 

4.  Computer simulation and 
experimental results 
 
 
4.1. Problem of the incomplete information 

Main of the image reconstruction schemes, depending on 
system of projections, are parallel and beam schemes are located 
in the two-dimensional space. In some practical engineering 
problems, for some important reasons (such as localization, size 
or limited access to the investigated object), impossible is to get 
projections from all the directions Such situation arises, for 
example, in the coal bed working. In the coal bed, during the 
preparation process, the access to longwalls may be very difficult 
or impossible at all, in dependence on the method of coal mining. 
Sometimes it is impossible to access to one or two sides of 
longwalls, and sometimes it is only impossible to access to the 

4.  computer simulation and 
experimental results 

3.4.  chaotic-block algorithms

4.1.  Problem of the incomplete 
information
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where fi  is the value of the given modeling function in the center 
of the i-th pixel and if

~
 is the value of the reconstructed function 

in the i-th pixel. 
 

 
Fig. 3. 3D view of the plot of f 

 
 

 
Fig. 4. 2D view of the plot of f  (the black color denotes the value 
0 and the white color denotes the value 1) 

 
 

Fig. 5. 3D view of the plot of f1 
 

 
 

Fig. 6. 2D view of the plot of f1 
 
 
4.3. Previous results  
 

Simulations carried out so far indicate that the classical 
algorithms (ART, ART-3 and MART) are useful for solving the 
classical problems, as well as the problems of incomplete 
information. Effectiveness of these algorithms in solving the 
classical problems has been already proved in several works at the 
beginning of research concerning the computer tomography. 
Moreover, their efficiency in regard to the problems of incomplete 
information is investigated in papers [14,17].  

For example, the reconstruction result of ),( yxf  with the aid 
of the algorithm ART-3, after 15 iterations in the reconstruction 
scheme (1x1,1x1), for n=20 x 20 pixels and for m=644 projections 
is presented in Figure 7 (where plot of the reconstruction function 
is displayed) and in Figure 8 (where plot of the mean absolute 
error for this image reconstruction is showed). Dependence of the 
mean absolute error and the maximum relative error on the 
number of iterations for this case of image reconstruction 
(received by using algorithms ART-3 and CHART-3) is presented 
in Figures 9 and 10, respectively. 

4.2.  Models of phantoms 
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where fi  is the value of the given modeling function in the center 
of the i-th pixel and if

~
 is the value of the reconstructed function 
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Fig. 3. 3D view of the plot of f 

 
 

 
Fig. 4. 2D view of the plot of f  (the black color denotes the value 
0 and the white color denotes the value 1) 

 
 

Fig. 5. 3D view of the plot of f1 
 

 
 

Fig. 6. 2D view of the plot of f1 
 
 
4.3. Previous results  
 

Simulations carried out so far indicate that the classical 
algorithms (ART, ART-3 and MART) are useful for solving the 
classical problems, as well as the problems of incomplete 
information. Effectiveness of these algorithms in solving the 
classical problems has been already proved in several works at the 
beginning of research concerning the computer tomography. 
Moreover, their efficiency in regard to the problems of incomplete 
information is investigated in papers [14,17].  

For example, the reconstruction result of ),( yxf  with the aid 
of the algorithm ART-3, after 15 iterations in the reconstruction 
scheme (1x1,1x1), for n=20 x 20 pixels and for m=644 projections 
is presented in Figure 7 (where plot of the reconstruction function 
is displayed) and in Figure 8 (where plot of the mean absolute 
error for this image reconstruction is showed). Dependence of the 
mean absolute error and the maximum relative error on the 
number of iterations for this case of image reconstruction 
(received by using algorithms ART-3 and CHART-3) is presented 
in Figures 9 and 10, respectively. 

4.3.  Previous results  
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