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ABSTRACT

Purpose: of this paper: The effectiveness of computer tomography algorithms applied for reconstructing the
internal structure of objects containing the non-transparent elements is discussed, in conditions of the incomplete
information about the examined object.

Design/methodology/approach: Problem of the internal structure examination of an object with non-transparent
elements, without its destruction, is considered by means of the classical and non-classical algebraic algorithms
of computer tomography used in standard approaches and in cases of incomplete projection data.

Findings: Computer tomography algorithms, known from literature and designed by the authors, are tested in
solving the problems of reconstructing the discrete objects of high contrast with non-transparent elements, with
regard to their precision, convergence and utility. Carried out research indicate that the chaotic algorithms are
more efficient, for the same values of parameters, in comparison with the corresponding classical algorithms.
Practical implications: Problems considered in the paper can arise in some technical issues, for example, in
exploring the coal interlayers in looking for the compressed gas reservoirs which can be dangerous for the
people’s life and health, in which application of the standard algorithms of computer tomography is impossible
for some reasons (like size of the examined object, its localization or its accessibility).

Originality/value: In the paper the originally designed by the authors reconstruction algorithms are presented
which appear to be more effective than the standard algebraic algorithms adapted for solving problems with the
incomplete projection data.
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1. Introduction

Methods of computer tomography can be used, not only in
medicine but also in wide class of technical problems, in every case
when the examination of internal structure of an object, without its
destruction, is needed. Computer tomography algorithms can be
divided into two groups: analytic and algebraic algorithms. In this
elaboration we will consider the algebraic algorithms only.

Let f{x,y) be a function representing the spatial distribution of
some physical parameter. Then, as a projection we define the line
integral:

p, =] fx )L, (1)

where L is an interval in the plane connecting the source of beam
radiation with the detector. The projection is usually obtained
from real physical measurements.

From mathematical point of view the problem of
reconstructing the object from projections consists in finding an
unknown function f{x,y) by means of a given set of projections p_
for all L. It is theoretically possible to reconstruct the function
Sflx,y) from the set p. by means of the Radon inversion formula
[20]. However, in practice only a discrete set of projection data
for a limited number of rays is given. Moreover, since the
projection data are obtained by real physical measurements, they
are perturbed by the random errors. Another problem is that in
many practical applications the projection data may not be
available at each direction and its number may be very limited. In
this case we say that we have areconstruction problem with
incomplete projection data. In particular, such kind of problems
arises in mineral industries and engineering geophysics connected
with acid mine drainage, the stability of mine workers, mineral
exploration and others [1,2]. Next problem which can appear in
practical situations is the presence of the non-transparent elements
in examined objects. In mining industry the non-transparent
elements could be, for example, the objects lying in the coal
interlayer and having strictly higher capacity than coal to absorb
energy, as well as stones or compressed gas, usually present in
coal interlayer. With all the mentioned problems, with reference
to computer tomography, will we deal in the current paper.

Let us notice that the energy lost by the given ray is equal to
the sum of energies lost in the particular pixels occurring in the
trajectory of this ray, and that every pixel absorbs the portion of
energy which is proportional to the value of function f in this
pixel and to the length of path passed by the ray to this pixel.
Values of the absorption coefficients are unknown, whereas
regions of the intersections of rays and pixels can be determined
by knowing the discretization density and the equations of lines
containing those rays. There are also known the initial and
terminal values of the rays energies, so difference between them
in consequence, which means that all of the projection values are
known. Those pieces of information give the basis for formulating
the system of linear equations. Problem of computer tomography,
determined in this way, consists in solving the following system
of linear equations:
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A-x=p. ()
where:

A=(a;)eR™ - matrix of coefficients;

X = (xl,xz,_,_,xn)T < R" - vector of unknown elements;

p=(p,, Py p,) € R™ - Vector of projection.

Method of solution of the above system of equations is
equivalent to the considered algebraic algorithms. In the next two
sections the approaches appropriate for the classical and non-
classical algebraic algorithms of computer tomography will be
presented.

More detailed description of the considered problem with the
figures explaining the essence of the problem can be found
in [13,17].

2. Classical algorithms

We consider the system (2) of algebraic linear equations,
constructed in the way described in the previous section. For
solving this problem we describe three approaches corresponding
with three algorithms [3,4].

2.1. ART algorithm

We will use the following notations:

Pi(x):X_(a[vx?;pf a, (3)
R
P’ =(1-w)l +aP, (4)

where a’ is the i-th row of the matrix A, 0< @ <2 denotes the
relaxation parameter and | refers to the identity matrix. Then we
proceed in the following way:

1. X9 e R"is an arbitrary vector;
2. (k+1)-th vector is received by the formula:
X = Pi’”kx(’" (i=12,..,m), ®)

where P is an operator defined by means of (4), @, denotes
the relaxation parameter and i(k)=k(mod m)+1.

The convergence conditions of the ART algorithm are proved
in [5].

2.2. ART-3 algorithm

Let us denote:

(@ 0-p, =) (=&, -@X)" ©)
a'[” ’

P, (x) =x—
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where:
£ S
o = S, IfS_O-, (7)
0, otherwise
and
P’ =(1-w)l+wP, 8)

where a' is the i-th row of the matrix A, 0<®<2 denotes the
relaxation parameter and | refers to the identity matrix. Then we
make the following steps:

1. x® < R"is an arbitrary vector;

2. (k+1)-th vector is received by the formula:

P’ =(1-w)l +aP, ©)

where pecis an operator defined by means of relations (6) and

(8), m denotes the relaxation parameter and i(k)=k(mod m)+1.
In this case, vector ¢ = (G refers to the vector of errors

which noise the projections p. Then, instead of solving the system
of equations (2) we solve the system of inequalities of the form:

p-e<A-x<p+e.

2.3. MART algorithm

The MART algorithm is the multiplicative algorithm, on
opposite to the ART and ART-3 algorithms which are additive.
The MART algorithm can be presented in following iterative
form:

1. 0<x® ¢ R"is an arbitrary vector;

2. (k+1)-th vector is received by the formula:

A
(k+1) _ Pi (k) (10)
X, =| —F— x,
J ((al(k),x(k))J J

where a’ is the i-th row of the matrix A, A denotes the relaxation
parameter and i=k(mod m)+1.

In this algorithm the relaxation algorithm can be constant or
variable and convergence of this algorithm is determined by
theorem presented in [13]. According to this theorem, if the
system of equations (2) is not contradictory and for each i, j, k the

inequality 0</1ik“,y <1lis true, then the sequence of (10)

converges to the solution of the system (2).
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3. Non-classical algorithms

Algorithms ART, ART-3 and MART are useful in solving the
standard problems as well as in considering the problems of
incomplete projection data. However, in cases of the significant
limitation of data the convergence of the above algorithms
becomes slow. In this section we present some known algorithms
and we introduce algorithms designed by the authors for the
purpose of speeding up the reconstruction of the examined
objects. In the previous considerations, the selection order of the
equations in the successive iterations of the algorithms was
always the same. It turns out that the order of selection can have a
big influence for the speed of algorithm convergence. This
conclusion has been taken into account in the asynchronous
algorithms, which include the chaotic algorithms [12]. Another
approach for increasing the running speed of the algorithm
consists in introducing the special type of parallel algorithms and
implementing them in the parallel computing systems [6,8,11].
Such kind of process happens by including, in the operation of
solving the system of equations, some group of processors
working independently and simultaneously, which can
significantly reduce the time of determining single iteration.
Group of algorithms realising this idea are the block-parallel
algorithms. There are two ways of obtaining the parallelism in the
algorithm. First approach is the following: the matrix of
coefficients is divided into blocks and every block corresponds
with one processor, which uses only the rows of matrix contained
in this particular block and generates the partial solution. In the
next step, the central processor averages the solutions which ends
the iteration. Another way for receiving parallelism of the
algorithm starts similarly, in dividing the coefficient matrix into
blocks corresponding with the processors working independently
and simultaneously, but the operations into every single block are
executed sequentially. Every successive solution is received as the
averaged value of solutions of all blocks.

3.1. Iterative-block algorithms

In practical realization of the parallel algorithms a big number
of local processors in the parallel computing structures is
required. For the purpose of reducing the number of required local
processors we will consider the iterative-block algorithms [10].

Let the matrix A and the projection vector p be decomposed
into M subsets according to the condition:

{4,2...m}y=H VH,V..OUH,,, (11)
where {1,2,...,m} is the set of indices of the matrix rows and:

H,={m,_ +1m_ +2,.,m} 12)
for O=my<m <...<m,=m.

In the iterative-block algorithm SZB-3, designed by the
authors, there are the following steps:

1. x© e R"is an arbitrary vector;
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2. (k+1)-th vector is received in accordance of the formula:

x*® — ¢ Z Bf_fpim X (13)

ieH, (1)
where (k) = k(mod M) +1, Pl.“’k is an operator defined with the

aid of formulas (6) and (8), 0 < @y, < 2 denotes the relaxation
coefficient, C is the constraining operator (defined in section 3.3)
and Bf.‘ describes the matrix of dimension nxn, with the
nonnegative elements of the form:

BY = diag{bl" b ... b}, (14)
where:
ki
b[lz,i _ Yy —, (15)
P
ieH,(k)
for p=12,..,n

3.2. Parallel-block algorithms

In the previously considered algorithms the parallel work is
executed in every block, whereas the blocks are connected
sequentially. In the algorithms presented in this section,
operations are executed sequentially in blocks, while the blocks
work simultaneously.

Let us decompose the matrix A and the projection vector p
into blocks, according to the formulas (10) and (11). For every
block H; we introduce an operator, denoted by Q;, defined by
composing the operators p” P .. P? , determined by the

m; mi-1

mi_1+1

conditions (6) and (8), indices of which belong to the block H;:

Q,=P°P° ..P° (16)

mi o omi-1 mi—1+1

The parallel-block algorithm RB-3, introduced by the authors,
runs as follows:

1. x© e R"is an arbitrary vector;

2. (k+1)-th vector is received by the formula:

M

x* — Z B,y = a7
i=1

where:

yk+1,i — Qix(k) , (18)

Q; is an operator described by formula (15) and B; refers to the
matrix of dimension #n x n with the nonnegative elements of the
form:
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B, = diag{h,b;,....b}, (19)
where:

a
" :Z (20)

P

M ’
2,
i=1

fori=12,.,M and p=12,. n

3.3. Chaotic algorithms

The asynchronous algorithms are based on the methods of
asynchronous iterations proposed under the name “random
relaxations” by D.Chazan and W.Miranker [9], and further
developed by G.M.Baudet [7] and M.N.EI Tarazi [19] who
introduced a visual model for the class of asynchronous
algorithms and obtained the first correct conditions of
convergence in the nonlinear case for contracting operators.

The following definitions will be used.

Definition A sequence of nonempty subsets | = {Ik }Z_O of the

set {1,2..., m} is a sequence of chaotic sets if

limsupZ, ={L,2,...,m}" (In other words, if each integer
J 1Ly

J—o

je{l,2,...,m} appears in this sequence infinite number of

times).

Definition If each subset 7, of the sequence of chaotic sets
= {]k }f:o consists of only one element, then such sequence is

called acceptable.

Definition A sequence .J ={c(k)}7, of m-dimensional vectors

o(k) = (o1(k),09(k),....c,, (k) With the integer coordinates,
satisfying the following conditions:

0<o,(k)<k-1 (21)
llim o, (k) = o, (22)
foreach j =1,2,.., m and k € N, is called a sequence of delays.

Let 7={T;}'’; be a set of nonlinear operators, acting in the
Euclidean space R" and let S be an algorithmic operator. We will
consider the following iterative process:

yk,i _ T[x(kfl) , (23)

=S O, (24)

where x denotes an n-dimensional vector of the space R" and
ie{1,2,...m}, for every k = 0,1,2,.... Then we can formulate one
more definition.
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Definition Let T;: R"—> R", i € {1,2,..., m} be a set of nonlinear

operators and let x® e R” be an initial value of the vector x. A
generalized model of the asynchronous iterations with limited
delays for the set of operators T,, i=1,2,....m, is a method of

building the sequence of vectors {x"}f:o, which is given
recursively by the following scheme:

yhi = T‘.X(‘Ti(k)), ifiel, (25)
yr otherwise
X = S(X(k—l), {yk,i }[dk ), (26)

©

- is a sequence of chaotic sets such that

where [ = {Ik}

I, c{2,...m} and J, = {g"(k)}::l refer to the sequences of
limited delays, for i=1,2,...,m.

Algorithm CHART-3 proceeds according to the following
steps:

1. x e R"is an arbitrary vector;

2. k+1-th iteration is calculated in accordance with following
scheme:

g pi'“A')F(kfl), ifiel,, (@7)
yF otherwise,
XD =CY yhyM, ((=12,m), 9)

iel}

where P are the operators defined by means of (6) and (8), @,

denote the relaxation parameters with property 0< @, <2, yik are
the positive real numbers with property:

>y =1, (29)

iel;
for each keN, [={I,|7 s the acceptable sequence of
chaotic sets such that 7, <{1,2,...,m}and, finally, C is the

constraining operator. In this paper we consider such C=C, C, C;,
where:

X, if xe D, (30)
0, otherwise,

Cl[x] = {

a, ifx; <a,
(C,Ix1), =1x,, if a<x, <b,
b, if x,>b,

@31
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and

0, if p,=0na, %0, (32)

(), {

x,, otherwise.

3.4. Chaotic-block algorithms

The chaotic and block algorithms, presented in previous
sections, can be combined together by forming the chaotic-block
algorithms.

New introduced algorithm CHRB-3 runs as follows:

1. x@ e R"isan arbitrary vector;
2. k+1-th iteration is calculated in accordance with the following
scheme:

M
Xk+1 — CZ B;(y(lﬂl),i , (33)

i=1

in which the following notation is used:

y(k+l)l — Qixk,
Q, = Pi,s, Pi,s,—l"'Pi,l’ (34)
Py =P/ Jely,

where P refer to the operators defined by relations (6) and (8),
symbol 0 < w < 2 describes the relaxation parameters, C is the

constraining operator, [/ = {Ii(k) }:—1

c {mia*l, miq+2,..., m; }=H; and

denotes the sequence of

chaotic sets such that 7,

Bf-c are the matrices of dimension n x n, with real nonnegative
elements which satisfy conditions (18) and (19), for each k € N.

4. Computer simulation and
experimental results

4.1. Problem of the incomplete
information

Main of the image reconstruction schemes, depending on
system of projections, are parallel and beam schemes are located
in the two-dimensional space. In some practical engineering
problems, for some important reasons (such as localization, size
or limited access to the investigated object), impossible is to get
projections from all the directions Such situation arises, for
example, in the coal bed working. In the coal bed, during the
preparation process, the access to longwalls may be very difficult
or impossible at all, in dependence on the method of coal mining.
Sometimes it is impossible to access to one or two sides of
longwalls, and sometimes it is only impossible to access to the
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basis but all the longwalls are accessible. Each of this situation
has its own scheme of obtaining the information. In this paper we
present the results of the image reconstructions only for two
different, the most natural, schemes of obtaining the projection
data, which are described below.

In the first scheme, called as the system (1x1), we have an
access to the research object from only two opposite sides. This
situation often arises in engineering geophysics. In this case the
sources of rays are situated only on one side and the detectors are
situated on the opposite side of the researched part of, for
example, a coal bed. This scheme of obtaining information is
shown in Figure 1.

1

Fig. 1. Scheme of the system (1x1): 1 - sources of rays,
2 - research object, 3 - rays, 4 - detectors

The second scheme of obtaining the projection data, called as
the (1x1,1x1) system, is displayed in Figure 2. In this situation we
can have an access to all four sides of the examined object.
Therefore, the sources can be situated on two neighboring sides,
and the detectors can be situated on the opposite sides. In this
way, the projections can be obtained from two pairs of the
opposite sides.

1

Fig. 2. The system (1x1, 1x1): 1 - sources of rays, 2 - research
object, 3 - rays, 4 - detectors
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4.2. Models of phantoms

In the simulation process of image reconstruction an
important factor is the choice of the density distribution, discrete
or continuous, of the researched object. In a coal bed, where we
search for the reservoirs of compressed gas or interlayers of a
barren rock, the density distribution may be considered as
a discrete function and the density difference of these three
environments (coal, compressed gas and barren rock) is
significant. Therefore, for illustrating the implementation of the
algorithms work for the case of incomplete data, we chose the
discrete function with high contrast given in the form:

f(x'y):{ll (my)eDeEcR, (35)
0, otherwise,

where E is a square £ ={(x,y):-1<x,y<L} and D is
a subset of £ of the following form:

D = [04-0.2] x [-0505] U [0202] x [0.3,05] U
U [-0.2,0.2] x [-0.1,0.1] U [0,0.2] x [0.1,0.3].

Another form of the discrete function representing the
density distribution can be as is written below:

1 (x,y)echEch,

2, (x,y)eD,cEcR?, (36)
fi(x,3)=43 (x,»)eD;cEcR?,

4, (x,y)eD4cEcR2,

0, otherwise,

where E'isasquare E ={(x,y):—-1<x,y <1} and D; are the
following subsets of £

D, =[-0.7,-0.4] x [-0.5,0.2],
D,=1[-0.2,0.2] x [-0.1,0.1],
D;=1[-0.2,0.2] x [0.3,0.5],
D,=1[0.4,0.7] x [0.4,0.7].

In order to evaluate the good quality of the computed
reconstruction of a high-contrast image, from the limited number
of projections and incomplete data, we have tested different kinds
of geometric figures and reconstruction schemes.

In Figures 3-6 plots of the exemplary functions of density
distribution are presented. Those functions are discrete and of
high-contrast. Selection of such kind of functions is not
accidental, because in technical problems, in which the proposed
algorithms can find an application, the density distribution is also
discrete and the differences of density between the particular
environments are significant. In Figures 3 and 5 the 3D view of
the plot of density distribution function is displayed, while in
Figures 2 and 4 the 2D view is showed.

Quality of the received reconstruction will be verified by
calculating the maximum absolute error:

R. Grzymkowski, E. Hetmaniok, M. Pleszczynski
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A:m?xf[—fia (37)
the maximum relative error:
0% = nm .100%’ (38)
and the mean absolute error:

1= 7] (39)

1
5—;2

i

where f; is the value of the given modeling function in the center
of the i-th pixel and f; is the value of the reconstructed function
in the i-th pixel.

Fig. 3. 3D view of the plot of /

Fig. 4. 2D view of the plot of / (the black color denotes the value
0 and the white color denotes the value 1)
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Fig. 5. 3D view of the plot of 1
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Fig. 6. 2D view of the plot of f;

4.3. Previous results

Simulations carried out so far indicate that the classical
algorithms (ART, ART-3 and MART) are useful for solving the
classical problems, as well as the problems of incomplete
information. Effectiveness of these algorithms in solving the
classical problems has been already proved in several works at the
beginning of research concerning the computer tomography.
Moreover, their efficiency in regard to the problems of incomplete
information is investigated in papers [14,17].

For example, the reconstruction result of f(x,y) with the aid

of the algorithm ART-3, after 15 iterations in the reconstruction
scheme (1x1,1x1), for n=20 x 20 pixels and for m=644 projections
is presented in Figure 7 (where plot of the reconstruction function
is displayed) and in Figure 8 (where plot of the mean absolute
error for this image reconstruction is showed). Dependence of the
mean absolute error and the maximum relative error on the
number of iterations for this case of image reconstruction
(received by using algorithms ART-3 and CHART-3) is presented
in Figures 9 and 10, respectively.
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Fig. 7. Plot of the reconstruction of function f

Fig. 8. Plot of the mean absolute errors

Also the non-classical algorithms (SZB-3, BR-3, CHART-3
and CHRB-3) appeared to be convergent and stable in cases of
incomplete information. Their effectiveness has been empirically
investigated, results of which can be found in [15, 16, 18].

For example, results of the i) reconstruction obtained

with the aid of CHRB-3 algorithm, after 500 iterations in the
reconstruction scheme (1x1), for n=20 x 20 pixels and for m= 782
projections, is presented in Figure 9 (in which the plot of
reconstructed function is displayed) and in Figure 10 (in which
the plot of mean absolute error for this image reconstruction is
showed).

Carried out experiments [17,18] show that the chaotic
algorithms are more useful, in case of each reconstructed function
and for every set of reconstruction parameters, than their
equivalents which does not apply the randomization. The
presented research concerned particularly the problem of
incomplete projection data oriented towards some technical
applications. However, in the standard approach the chaotic
algorithms are also more efficient.

Similarly, by comparing the standard algorithms of computer
tomography with the block algorithms it turns out that the block
algorithms are more useful (considering the time needed for
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obtaining the required error, not the number of iterations after
which the assumed error is received - do not forget that in the
block algorithms we use the simultaneous work of many
processors).
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Fig. 10. Dependence of the maximum relative error on the number
of iterations for the image reconstruction of £ in the system (1x1)

Considering the comparison between two types of block
algorithms we suppose to lean towards the RB-3 algorithm.
Advantage of this algorithm results from two facts: firstly,
because of the technical reasons - in the SZB-3 algorithm one
need to use much bigger number of processors than in RB-3
algorithm, secondly, because speed of convergence of algorithm
RB-3 is better than in case of algorithm SZB-3.

4.4. Objects with non-transparent
elements

In the previous research concerning the usefulness of non-
classical computer tomography algorithms for solving non-
standard problems of incomplete information the objects
containing the non-transparent elements have not been
investigated yet. In practice, such situations can be met quite

R. Grzymkowski, E. Hetmaniok, M. Pleszczynski
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often. For example, in medicine such case could concern the
examination of patient who has in his body some pieces of metal
(like a needle, a shrapnel, a golden tooth or a swallowed coin). In
medicine this classical problem is already solved. Whereas, the
cases of incomplete information (expressed in form like
considered in this paper) have not been investigated yet, either for
classical or non-classical algorithms. In suggested applications of
those algorithms (in mining industry, for example) the non-
transparent elements could be the objects lying in the coal
interlayer and having strictly higher capacity to absorb energy
than coal, stones or compressed gas, usually lying in coal
interlayers. The objects with non-transparent elements will be
modeled by using the modified functions f'and f.

Such modification is formulated by the relation (40)
corresponding to function f:

1, (x,y)eDcEcR?,
g(x,y)={M,(x,y)eD,cEc R?
0, otherwise,

(40)

where E denotes a square E ={(x,y):-1<x,y<1}, D is
a subset of E having the following form:

D = [04-0.2] x [0505] U [0202] x [0.305] U
U [-0.2,0.2] x [-0.1,0.1] U [0,0.2] x [0.1,0.3] ,

D, is a subset of E such that DND, =0 and M refers to

aconstant such that A >>1. Similar modification but
corresponding to function  is given by the relation (41):

1, (x,y)echECRz,
2, (x,y)echEch,
3, (x,y)eDchch,
4, (x,y)eD4cEcR2,
M, (x,y)eDSCEcRZ,
0, otherwise,

(41)
g xy)=

where £ denotes a square £ = {(x,y):-1< x,y <1}, D;are the
subsets of E of the following form:

D, =[-0.7,-0.4] x [-0.5,0.2], D,=1[-0.2,0.2] x [-0.1,0.1],

D;=[-02,02] x[0.305], D,=[0.4,0.7] x [0.4,0.7],

D, is a subset of E such that for each 0<i<5 there is
D,ND, = and M refers a constant such that Az >> 4.

Value of the constant M is finite for the need of graphic
presentation of the considered function with non-transparent
element. In reality and in carried out simulations we have
M = oo, that is the non-transparent element absorbs the entire
energy of the ray hitting this element. It means that each
projection, with the non-transparent element on its road, does not
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carry any information, except the one informing about the
existence of some non-transparent element in some unknown
place.

We assume in the paper that the non-transparent elements are
determined in the discs of given centre and radius, which means
that the set D; or Ds are of the form
{6, 9) 1 (x—x) 2 +(y—y,) < ri}c E- Exemplary model of
such object is showed in Figure 11.

Fig. 11. Example of the object defined by means of function g
with the non-transparent element

4.5. Efficiency of the classical
algorithms in examining the
objects with non-transparent
elements

In this section we present a discussion of efficiency of the
classical algorithms ART, ART-3 and MART in examining the
objects with non-transparent elements. The research are made on
the assumption of incomplete set of data - such problem has been
presented in Section 4.1. Moreover, the research is carried out for
functions g(x,y) and g;(x,y) describing the density distribution of
examined objects.

In the current paper only these regions of domain of functions
g(x,y) and g;(x,y) will be reconstructed in which the functions take
finite value (it means, we reconstruct the corresponding functions
f(x,y) and fi(x,y)). Determination of the precise location of the
non-transparent elements will be a subject of the next work.

Figures 12 and 13 present the examined density distribution
functions g(x,y) and g;(x,») where the non-transparent elements
(sets D; and Ds, respectively) are disks: (x — 0.2)% + (x + 0.6)? <
(0.05)?and (x — 0.4)% + (x + 0.4)% < (0.09)?, respectively.

In Figures 14-19 the results of work of the MART algorithm
are displayed, for the system (1x1,1x1), functions g(x,y) and
g:(x,y) and for the proper values of the following parameters:
number of sources on one side m, discretization density of
reconstructed object n (number of pixels N=r?), iteration number
iter, together with plots of these reconstruction errors.
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Fig. 12. Reconstructed function g(x,y)

Fig. 15. Reconstruction of function g(x,y) (2D view) for m=30,
n=20, iter=50, in system (1x1,1x1)

Fig. 16. Plot the absolute errors | g(x,y) —g(x,y) for m=30, n=20,
iter=50, in system (1x1,1x1)

Fig. 14. Reconstruction of function g(x,y) ( 3D view) for m=30, Fig. 17. Reconstruction of function g;(x,y) (3D view) for m=30,
n=20, iter=50, in system (1x1, 1x1) n=20, iter=50, in system (1x1,1x1)

m Research paper , R. Grzymkowski, E. Hetmaniok, M. Pleszczynski
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Fig. 18. Reconstruction of function g;(x,y) (2D view) for m=30, Fig. 20. Reconstruction of function g,(x,y) (2D view) for m=18,
n=20, iter=50, in system (1x1,1x1) n=20, iter=250, in system (1x1)

Fig. 21. Plot the absolute errors |g;(x,y) — &;(x,y)|for m=18, n=20,
Fig. 19. Plot the absolute errors |g;(x,y) — &,(x.y)| for m=30, n=20, iter=250, in system (1x1)
iter=50, in system (1x1,1x1)

For the case of system (1x1) the exemplary reconstructions
are showed in Figures 20-23.

Presented reconstructions represent only the examples. Cases
with various qualities of reconstruction are showed in purpose.
Series of the carried out experiments indicate that for each of the
examined density distribution functions, for each system and for
the non-transparent elements located in “reasonable” way (the
elements are disjoint with sets D; - problem of intersections will
be considered in next papers - and they are of not too big sizes),
for each resolution (value of parameter r) there exists such values
of parameters m and iter that the received reconstruction is of the
desired quality. For example, in Figures 24 and 25 the errors of
reconstructions generated with the aid of algorithms ART and

ART-3 are displayed (additionally, in the first case the non- Fig. 22. Reconstruction of function g(x,y) (3D view) for m=18,
transparent element is located in the bowl of letter P). n=20, iter=250, in system (1x1)

Efficiency of the computer tomography algorithms in examination of the internal structure of materials... a
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Fig. 23. Plot the absolute errors |g(x,y) — g(x,y)| for m=18, n=20,
iter=250, in system (1x1)

Fig. 24. Plot the absolute errors |g(x,y) — § (x,»)| for m=18, n=20,
iter=25, in system (1x1,1x1), for set D; = (x + 0.1)? + (x — 0.2)* <
(0.05)?

Fig. 25. Plot the absolute errors |g(x,y) — &(x,y)| for m=58, n=40,
iter=500, in system (1x1), for set D; = (x — 0.2)> + (x + 0.6)2
<(0.05)?

Research paper ,
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4.6. Efficiency of the non-classical
algorithms in examining the
objects with non-transparent
elements

In this section the effectiveness of non-classical algebraic
algorithms (introduced in Section 3) in examination of the objects
with non-transparent elements is investigated. The research is
realized on the assumption of incomplete set of data which is
presented in Section 4.1 and, similarly like in previous case, the
research is made for functions g(x,y)and g;(x,y) describing the
density distribution of examined objects.

In algorithms discussed in this section, in most of cases the
projection matrix A is divided into blocks for the purpose of
possibility to parallelize the calculations. Such division depends,
in natural way, on the number of rays sources - each source
generates some beam of rays which can determine a certain block.
Vector of solutions after the full iteration is defined by the
weighted mean of the partial solutions vectors received from
every block. In case when the non-transparent element is located
nearby the source or when the non-transparent element is of the
large size, some blocks will exist such that most of the projection
will be absorb by this element, which means that the solution
vector from this block will falsify the total image. That is why
some modifications of algorithms SZB-3, RB-3 and CHRB-3 are
needed thanks to which they will be more efficient. The
mentioned modification will be a subject of further research.

Algorithm which do not need any modification is CHART (or
CHART-3). Reconstruction results obtained with the aid of this
algorithm are presented in the next figures.

Figure 26 shows the absolute error of reconstruction similar to
those one presented in Figure 24. The results indicate that,
similarly as in cases of objects without non-transparent elements,
the chaotic algorithm is more useful, for the same values of
parameters, in comparison with the corresponding algorithms.
The reconstruction errors are three times smaller than the errors
received for algorithm ART-3.

0.0001
0.000078

Fig. 26. Plot the absolute errors |g(x,y) — g(x,y)| for CHART-3
algorithm, for parameters m=18, »n=20, iter=25, in system
(1x1,1x1), for set Dy = (x + 0.1)? + (x — 0.2)? < (0.05)?

Whereas, in Figure 27 the absolute error of reconstruction
similar to those one presented in Figure 25 is showed. Again, it
turned out that the chaotic algorithm is more efficient than the
corresponding ART algorithm.
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Fig. 27. Plot the absolute errors |g(x,y) — g(x,y)| for CHART-3
algorithm, for parameters m=58, n=40, iter=500, in system (1x1),
for set D; = (x — 0.2)> + (x + 0.6)% < (0.05)?

5. Conclusions

In this paper we have presented the number of computer
tomography algorithms, known from the literature and designed
by the authors, applied in the standard approach or, after the
proper adaptation, in solving the problems of the incomplete
projection data and in reconstructing the objects with non-
transparent elements. We have considered the general model of
asynchronous iterations and new block, chaotic and chaotic-block
iterative algorithms for reconstruction of the high-contrast objects
from incomplete projection data, without and with the non-
transparent elements. These algorithms can be realized on the
parallel computing structure consisting of elementary processors
and some central processor, all of which are connected with
shared memory.

The effectiveness and convergence of presented algorithms
have been discussed. The experimental results show that
convergence of the block-parallel chaotic algorithm CHRB-3 is
better by comparison with the block-parallel algorithm RB-3, the
iterative-block algorithm SZB-3 and especially with standard
algorithms. Moreover, discussion of efficiency of the classical
algorithms ART, ART-3 and MART, as well as the non-classical
algorithms, in examining the objects with non-transparent
elements in condition of the incomplete set of data confirmed this
conclusion. Showed results indicate that, similarly as in cases of
objects without non-transparent elements, the chaotic algorithms
are more efficient, for the same values of parameters, in
comparison with the corresponding classical algorithms.

Taking into account the time of implementation, for the
block-parallel algorithm implemented on multiprocessors
computers the time is approximately A times smaller (where M is
the number of processors which is equivalent to the number of
blocks) than for the sequential computers. Additionally, from
results of computer simulation it follows that the time of running
of the block-parallel algorithms is better with comparison with the
sequential ART-3.

Another conclusion resulting from presented research is that
the configuration (1x1,1x1) is considerably better by comparison
with the scheme (1x1). And for each considered scheme of
reconstruction there exist the parameters which allow to obtain
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the enough good quality of reconstruction after some number of
iterations but this number is considerably larger than for
reconstruction with complete projection data. However, in some
technical problems (like for example in examining the coal bed
where the access to the researched object is significantly limited -
see the Figure 1) it is impossible to use the scheme (1x1,1x1).
The received results indicate that the discussed algorithms are
convergent also for the system (1x1), but for receiving the same
reconstruction quality they need the considerably bigger number
of iterations. Moreover, all the considered algorithms are stable.
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