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Analysis and modelling

Abstract
Purpose: Analysis of the process of overshooting the material with high speed refers to the identification of 
certain properties of elasto-dissipative materials. The result of this identification is to determine the value of 
deformation on the basis of changes in the speed of the projectile inside the material until it stops or overshoot 
this material.
Design/methodology/approach: On the basis of the proposed dynamic models of piercing the material using 
energy balance equations, dissipation of the energy of mass which strikes the shield has been described.
Findings: Dependence of the values of elastic energy and dissipative energy has been derived based on the 
energy balance equations whose values determine the sensitivity of the analyzed parameters of the dynamic 
models of the overshooting process.
Research limitations/implications: Dynamic models have been analyzed and the impact energy balance 
equations have been derived. Those equations were the basis to determine the constants and to show their 
mathematical and graphical interpretation.
Practical implications: Derivation of the dependence for the constants, which are characteristic for the energy 
balance equations, allowed to describe by dependencies the selected parameters of the model, whose identification 
may be performed using a special quasi-statistical tests on special stand or in the manner as described.
Originality/value: Presented work including the identification of piercing the ballistic shield is a part of work 
on the implementation of the degenerated models to describe these phenomena.
Keywords: Computational mechanics; Impact load; Degenerated model; Composites
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1. Introduction 
 

Modeling of dynamic processes is largely an art that requires 
very good knowledge of the researcher. Modeling of mechanical 
systems/mechatronics, which is used to simplify too much leads 
to undesirable results, resulting in such a model at the outset bear 

is a big mistake. By joining the work associated with adaptation to 
specific models described in the work [1,2,3,4,5,6,7,8] need to be 
analyzed in terms of their structure and adopt a capabilities such 
as the impact energy dissipation. Considerable attention and 
presents the possibility of degenerate models described in the 
work [9]. 

1.	�Introduction
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Practical application of degenerated models in the process of 
piercing materials used to build ballistic shields encounters a 
number of theoretical difficulties [10,11,12]. This problem is 
related to insufficient knowledge of the dynamic behavior of these 
models, which are generally derived from the adoption of 
complex, nonlinear, constitutive dependencies of materials or 
from combining rheological models of Maxwell type with linear 
elastic or dissipative elements. In engineering problems, besides 
effects of rheological forces, there is always element of mass, 
which causes forces of inertia in conditions of dynamic loading. 
Including these forces in the equations of dynamic leads to the 
necessity of the analysis of degenerated system, which is the 
subject of many studies [13,14,15,16,17]. 

Works in this area tend to seek reliable dynamic models in the 
field of degenerated systems. This approach to searching for 
description of material properties seems to be appropriate. 

The dynamic development of materials science [18] in recent 
years has generated a lot of modern composite materials. To 
describe the properties of materials, especially those intended for 
ballistic protection, non-classical models should be seek. With the 
use of these models it will be possible to describe, by differential 
equations, the reaction of the material on piercing projectile. 

However, due to the complex structure of the system, 
assumptions which describe the resisting forces of the pierced 
material on the projectile, will take an extensive form. We should 
strive to simplify the description of complex structures of 
overshooting process, because this phenomenon can be explained 
by using degenerate models by simple non-classical dynamic 
models. 
 
 

2. Dynamic models and their analysis in 
terms of energy balance equations 
 

Analysis of the phenomena of absorbing the impact energy of 
small arms projectile is a complex issue of impact load of light 
ballistic shields. Literature includes a variety of possible solutions 
to the problem expressed by energy dissipation model 
[19,20,21,22,23]. Previous analysis contained in the papers 
[24,25,26,27,28,29] come down to the local issues of the direct 
impact, and the waves and vibrations that appear in the distance 
from the place of impact on the shield, do not affect the motion of 
a projectile in the shield. They appear only after projectile stops or 
leave the shield. The subject of this analysis is the process of 
energy absorption on the example of aramid ballistic shields, 
shoot by 9mm Parabellum bullet type. This analysis has been 
performed by two independent methods. Each of them uses a 
different dynamic model. 

The first case assumes that the impact of the shield’s material 
on the projectile can be described by internal force in the form of 
the Kelvin’s model with a dry friction (Fig. 1). In the second case 
the Zener’s model with a dry friction has been adopted (Fig. 2). 

In both cases the models of reaction between forces of the 
shield’s material and the projectile are determined by the 
mechanical energy losses and two parameters: k, h. However, 
differences in the structure of these models substantially affect the 
results of the analysis of energy dissipation. 

In both cases, the following assumptions have been made: 

a) tracking the movement of the projectile in the shield will 
allow to determine the material constants of the shield, 

b) during movement of the projectile in the shield, the material 
constants:  

 c, k, h (model - 1);  
 c, c0, k, h (model - 2); 

do not depend on the projectile’s speed and its location. 
Study on the mechanical properties of materials show that the 

second assumption seems to be debatable, since the tests of 
stretching materials at different speeds shown the dependence of 
obtained curves of load-deformation from the selected speeds 
[30,31]. Material constants appearing in the models (1) and (2) 
should be considered as an average values in the range of speed 
from v0 (impact speed of the projectile) to the small or even zero 
speed (stoppage of the projectile in the shield). 
 

 
 
Fig. 1. Dynamic Kelvin’s model of strength of the material’s 
shield reaction on projectile 
 

 

 
 

Fig. 2. Dynamic Zener’s model of strength of the material’s shield 
reaction on projectile  

 

2.1. Analysis of the absorption of impact 
energy in the Kelvin’s model 
 

According to Kelvin’s model (Fig. 1) the strength S of the 
resistance to motion of the material which depends on projectile’s 
position x in the material and its velocity xv  would be describe 
in the following way: 

 
)(, vhSgnxkcxvxS  (1) 

 
Differential equation of the projectile’s movement would take 

the form: 
 

0)( cxxhSgnxkxm  (2) 
 

Assuming the time interval for 0t  (the moment of impact) 
until the time tk (moment of the stoppge of the projectile), it is 
noted that for: 
 

ktt ,0   0x , therefore 1xSgn   (3) 
 

Equation (2) for the time interval (3) would take the form: 
 

0cxhxkxm  (4) 
 
with initial conditions in the form: 
 

0)0(,0)0( vxx  (5) 
 
where: moment tk satisfies the equation:  
 

0)( ktx  (6) 
 

The solution of equation (4) is function that shows a damped 

vibrations with the average value 
c
h  presented in graphical form 

in Fig. 3. 
Equation (4) has been multiplied by the elementary 

displacement dtxdx  and integrated in the range ktt ,0  to 
receive: 
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After summing up all the terms according to equation (4) we 

obtain the dependence of the form: 
 

0
22

22
0 M

M
xchxkmv  (11) 

 
Dependence (11) shows the energy balance in the interval of 

time from an impact of a projectile to its stoppage in the material. 

Impact energy 
2

2
0mv  (kinetic energy of the projectile) is 

transformed into potential energy (purely elastic deformation 

energy) 
2

2
Mcx  and dissipative energy Ed which is described by 

the dependence: 
 

Md hxkE  (12) 
 

The value of dissipation energy depends on the constant k of 
viscous damping and constant h that describes dry friction. Constant 

 represents a field limited by a fragment of the phase trajectory 
v(x) of damped vibrations (Fig. 4). 

 

 
 

Fig. 3. Graph of the function x(t) - solid line Marks the interval ktt ,0  

2.	�Dynamic models and their 
analysis in terms of energy 
balance equations

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


307

Analysis and modelling

Identification of the selected parameters of the model in the process of ballistic impact

Practical application of degenerated models in the process of 
piercing materials used to build ballistic shields encounters a 
number of theoretical difficulties [10,11,12]. This problem is 
related to insufficient knowledge of the dynamic behavior of these 
models, which are generally derived from the adoption of 
complex, nonlinear, constitutive dependencies of materials or 
from combining rheological models of Maxwell type with linear 
elastic or dissipative elements. In engineering problems, besides 
effects of rheological forces, there is always element of mass, 
which causes forces of inertia in conditions of dynamic loading. 
Including these forces in the equations of dynamic leads to the 
necessity of the analysis of degenerated system, which is the 
subject of many studies [13,14,15,16,17]. 

Works in this area tend to seek reliable dynamic models in the 
field of degenerated systems. This approach to searching for 
description of material properties seems to be appropriate. 

The dynamic development of materials science [18] in recent 
years has generated a lot of modern composite materials. To 
describe the properties of materials, especially those intended for 
ballistic protection, non-classical models should be seek. With the 
use of these models it will be possible to describe, by differential 
equations, the reaction of the material on piercing projectile. 

However, due to the complex structure of the system, 
assumptions which describe the resisting forces of the pierced 
material on the projectile, will take an extensive form. We should 
strive to simplify the description of complex structures of 
overshooting process, because this phenomenon can be explained 
by using degenerate models by simple non-classical dynamic 
models. 
 
 

2. Dynamic models and their analysis in 
terms of energy balance equations 
 

Analysis of the phenomena of absorbing the impact energy of 
small arms projectile is a complex issue of impact load of light 
ballistic shields. Literature includes a variety of possible solutions 
to the problem expressed by energy dissipation model 
[19,20,21,22,23]. Previous analysis contained in the papers 
[24,25,26,27,28,29] come down to the local issues of the direct 
impact, and the waves and vibrations that appear in the distance 
from the place of impact on the shield, do not affect the motion of 
a projectile in the shield. They appear only after projectile stops or 
leave the shield. The subject of this analysis is the process of 
energy absorption on the example of aramid ballistic shields, 
shoot by 9mm Parabellum bullet type. This analysis has been 
performed by two independent methods. Each of them uses a 
different dynamic model. 

The first case assumes that the impact of the shield’s material 
on the projectile can be described by internal force in the form of 
the Kelvin’s model with a dry friction (Fig. 1). In the second case 
the Zener’s model with a dry friction has been adopted (Fig. 2). 

In both cases the models of reaction between forces of the 
shield’s material and the projectile are determined by the 
mechanical energy losses and two parameters: k, h. However, 
differences in the structure of these models substantially affect the 
results of the analysis of energy dissipation. 

In both cases, the following assumptions have been made: 

a) tracking the movement of the projectile in the shield will 
allow to determine the material constants of the shield, 

b) during movement of the projectile in the shield, the material 
constants:  

 c, k, h (model - 1);  
 c, c0, k, h (model - 2); 

do not depend on the projectile’s speed and its location. 
Study on the mechanical properties of materials show that the 

second assumption seems to be debatable, since the tests of 
stretching materials at different speeds shown the dependence of 
obtained curves of load-deformation from the selected speeds 
[30,31]. Material constants appearing in the models (1) and (2) 
should be considered as an average values in the range of speed 
from v0 (impact speed of the projectile) to the small or even zero 
speed (stoppage of the projectile in the shield). 
 

 
 
Fig. 1. Dynamic Kelvin’s model of strength of the material’s 
shield reaction on projectile 
 

 

 
 

Fig. 2. Dynamic Zener’s model of strength of the material’s shield 
reaction on projectile  

 

2.1. Analysis of the absorption of impact 
energy in the Kelvin’s model 
 

According to Kelvin’s model (Fig. 1) the strength S of the 
resistance to motion of the material which depends on projectile’s 
position x in the material and its velocity xv  would be describe 
in the following way: 

 
)(, vhSgnxkcxvxS  (1) 

 
Differential equation of the projectile’s movement would take 

the form: 
 

0)( cxxhSgnxkxm  (2) 
 

Assuming the time interval for 0t  (the moment of impact) 
until the time tk (moment of the stoppge of the projectile), it is 
noted that for: 
 

ktt ,0   0x , therefore 1xSgn   (3) 
 

Equation (2) for the time interval (3) would take the form: 
 

0cxhxkxm  (4) 
 
with initial conditions in the form: 
 

0)0(,0)0( vxx  (5) 
 
where: moment tk satisfies the equation:  
 

0)( ktx  (6) 
 

The solution of equation (4) is function that shows a damped 

vibrations with the average value 
c
h  presented in graphical form 

in Fig. 3. 
Equation (4) has been multiplied by the elementary 

displacement dtxdx  and integrated in the range ktt ,0  to 
receive: 

22

2
0

02

0

)(

00

vvvdvdtxx
v

t tv

v

k k

 (7) 

k Mt x

x

vdxdtxx
0 0

 (8) 

M

t tx

x

x xxdxdtx
k k

M

0

)(

)0(
0  (9) 

22

2

00

)( 2

0

M

xt tx

x

xxxdxdtxx

Mk k

 (10) 

 
After summing up all the terms according to equation (4) we 

obtain the dependence of the form: 
 

0
22

22
0 M

M
xchxkmv  (11) 

 
Dependence (11) shows the energy balance in the interval of 

time from an impact of a projectile to its stoppage in the material. 

Impact energy 
2

2
0mv  (kinetic energy of the projectile) is 

transformed into potential energy (purely elastic deformation 

energy) 
2

2
Mcx  and dissipative energy Ed which is described by 

the dependence: 
 

Md hxkE  (12) 
 

The value of dissipation energy depends on the constant k of 
viscous damping and constant h that describes dry friction. Constant 

 represents a field limited by a fragment of the phase trajectory 
v(x) of damped vibrations (Fig. 4). 

 

 
 

Fig. 3. Graph of the function x(t) - solid line Marks the interval ktt ,0  

2.1.	�Analysis of the absorption of 
impact energy in the Kelvin’s 
model

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper308

Journal of Achievements in Materials and Manufacturing Engineering

K. Jamroziak

Volume 49 Issue 2 December 2011

 
 

Fig. 4. The graphical form of the constant  of energy balance equation 
 

2.2. Analysis of the absorption of impact 
energy in the Zener’s model 
 

In the Zener’s model (Fig. 2) the strength S of the resistance 
to motion of the material which depends on projectile’s position x 
in the material and its velocity xv  would be describe in the 
following way: 
 

)(, 0 vhSgnxccxvxS  (13) 
 

Differential equation of movement of mass m is described by 
two equations: 
 

0)()(0 xhSgncxxcxm  (14) 

kxc )(0  (15) 
 

Energy losses of impacting projectile should be analyzed in 
the time interval t  (0, tk), so up to the total deceleration of the 
projectile where the following initial conditions are assumed: 
 

ktt ,0   0x  to 1xSgn  (16) 
 

Eliminating the constant  from equations (14) and (15) 
results in reducing dependence to just one cubic equation in the 
form: 
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Equation (17) has been multiplied by the elementary 
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The remaining integrals would take the form: 
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Summing up the dependences (20-23) by equation (17) we 

obtain the following dependence: 
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Dissipative energy is so in this case described by the function 

of a form: 
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The parameter  shows the field limited by a trajectory a(v) of 

the vibrations damped in the scope )0,( 0vv  shown in Fig. 5.

 

 
 

Fig. 5. The graphical form of the constant   of energy balance equation 
 

 
3. The identification of selected 
parameters of the model 
 

The energy taken by the shield in the moment of impact, can 
be represented (in a large simplification) as the sum of elastic 
energy and energy of dissipation. 
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In order to determine the energy of dissipation for the analyzed 

system, it is necessary to determine xM, which value depends on 
the speed of the projectile in the material. This value, which is 
defined as , is expressed by relation: 
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A linear increase of deformation of the shield has been 

assumed (which is a big simplification) and for this condition we 
obtain the relation: 
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Based on the relation (31) constant  can be written in the 
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After substituting equation (29) into equation (33) constant  
would ultimately take the form: 
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If we know the mathematical description of the parameters  

and  which are characteristic for the energy balance equations, to 
estimate them we need only to identify the changes of projectile 
speed in the material xM.  

Estimation of speed changes in the material is possible by 
measuring the decrease of the speed on the test stand. 
Identification of xM can be performed in several ways using statical 
or quasi-statical tests. However, verification with the use of 
ballistic test gives reliable results, and involves measuring the 
decrease of speed in the material by measuring the initial speed of 
v0 and missile velocity vk until the stoppage of the projectile in the 
material. In this way the form of vo(x) is determined as it is 
illustrated in Fig. 6. 

 

 
 
Fig. 6. Method of determining the parameter xM from relation vo(x) 

2.2.	�Analysis of the absorption of 
impact energy in the Zener’s 
model
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Definition of constants  and , which relation has been shown 
in the form: 

;
2

0 Mxv   
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v
2

3
0  

 
and determination of parameter xM comes down to determining 
the elastic strain energy and energy of dissipation by using 
equations (12) and (25). Elastic strain energy (see 2.1) depends on 
the constant c. Identification of the constant c can be easily 
performed in the tests of quasi-statical piercing in the scope of the 
unstable deformation. This relation can be obtained on the basis of 
experimentally obtained relationship diagrams (x) and  (x) 
(Fig. 7) in the scope of the unstable deformation. 
 

 
 

Fig. 7. Method of estimating the parameters c, k0/c0  based on the 
determination of S’(S”) in quasi-statical test 
 

The value of energy of dissipation depends on the constant k of 
viscous damping and constant h that describes the dry friction. 
These parameters are responsible for the behavior of the material 
under conditions of permanent deformation. They can be 
determined on the basis of static tests involving loading the material 
of the shield by constant forces S0 larger than the constant h, while 
measuring the speed and acceleration of deformations. In earlier 
works [15,32] permanent deformation has been defined in a form: 
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where replacement value of the damping kz.   
 

 
 
Fig. 8. Identification of constants h, k based on the relation S0(Z) 

 
 
4. Conclusions 
 

The paper presents the identification of the dissipation energy 
of the projectile impacting the shield made of composite 
materials. The analysis of selected dynamic models has been 
performed by using the equations of energy balance. A common 
part for both models adopted for this analysis, was a description 
of the energy losses by parameters of dry friction and viscous 
damping. The second model (Fig. 2) belongs to a group of 
degenerated models. The analysis derived depending on the 
energy dissipation of energy balance equations are significantly 
different from each other. In the model (Fig. 1) ) this energy 
depends only on the parameters k and h due to changes in the 
speed of the projectile in the material through parameter xM. The 
second model (Fig. 2) takes also into account in its construction 
the parameters of static and dynamic stiffness of the shield, which 
are characteristic for non-destructive deformation of the shield. 
Description of the dissipative energy in the second model, seems 
to be more accurate. The main reason for this is that it takes into 
account the parameters of the material in the scope of unstable 
deformation, especially hysteresis of the material. It is important 
because it moves the limit of unstable deformation of the shield 
so, on the basis of work [16] the boundary energy which 
determines the movement into the destructive phase, reaches its 
maximum value. The second part of the paper focuses on the 
identification of selected parameters of the model and provides 

 

derived relations for their determination. It can be noticed that the 
determination of the parameter xM requires the special testing, 
which are the goal of the author of this paper. The values of other 
parameters can be determined through statical and quasi-statical 
tests that use the method of regression analysis. Because of that, 
the problem reduces itself to determine the value of deformation 
of overshoot shield.  

The further work should focus on determining the parameters 
of the model through determining the fields of loops in 
simulations and then determining the values of parameters of the 
analyzed models by use of linear regression. In the case of the 
second model these method of identification (energy balance 
method) causes many difficulties due to a complex equations, in 
which the coefficients appearing in the equation of identification 
are the complex expressions of stiffness, damping and masses 
occurring in the system. Further work continues towards the 
adaptation of procedures based on energy balance equations and 
the balance of power to identify the parameters of adopted 
degenerated models. 
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Identification of the selected parameters of the model in the process of ballistic impact

Definition of constants  and , which relation has been shown 
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