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AbstrAct
Purpose: The identification of the optimal mathematical model that meets the assumed criteria is the main 
purpose of this paper, which is an introduction to the task of synthesis of one-dimensional vibrating mechatronic 
systems. Assumed criteria are to provide the accurate analysis of the system together with maximum 
simplification of used mathematical tools and minimize required amount of time. The correct description of 
a given system by its model during the design phase is a fundamental condition for proper operation of it. 
Therefore, the processes of modelling, testing and verification of used models were presented. On the basis of 
carry out analysis the optimal (in case of assumed criteria) model was selected and it will be used to realize the 
task of synthesis in future works.
Design/methodology/approach: A series of mathematical models with different simplifying assumptions was 
created. Using the created models and corrected approximate Galerkin method the dynamic characteristic of the 
considered system was designated. The analysis of an influence of parameters of the system’s components on 
obtained characteristic was conducted. The approximate method was verified to check its accuracy and decide 
if it can be used to analyse such kind of mechatronic systems.
Findings: The main result of the work is an indication of the suitable mathematical model of the considered 
system.
Research limitations/implications: Influence of temperature changes on the transducer’s properties was 
neglected in developed mathematical models. It will be considered in the future works.
Practical implications: Presented method of mechatronic system’s analysis can be use in process of designing 
of technical devices where both, simply and reverse piezoelectric effects can be used.
Originality/value: Development of the mathematical models in which the considered system is modelled as a 
combined beam.
Keywords: Applied mechanics; Vibrating mechatronic systems; Approximate methods; Piezoelectric 
transducers

Reference to this paper should be given in the following way: 
M. Płaczek, Indication of the suitable model of a mechatronic system as an introduction to the synthesis task, 
Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 338-349. 

 

1. Introduction 
 
The paper presents the issues of modelling and testing of 

flexural vibrating mechatronic systems with piezoelectric 
transducers used as vibration dampers. The method of analysis of 
the considered system is presented, started from development of 
the mathematical model, by setting its characteristics, to determine 
the influence of the system’s properties on these characteristics.  

Considered system is an example of piezoelectric effect 
application in technical devices. Piezoelectricity has found a lot of 
applications since it was discovered in 1880 by Pierre and Jacques 
Curie. There are many applications of the direct piezoelectric 
effect – the production of an electric potential when stress is 
applied to the piezoelectric material, as well as the reverse 
piezoelectric effect – the production of strain when an electric 
field is applied [1]. The discussed subject is important due to 
increasing number of applications, both simple and reverse 
piezoelectric phenomena in various modern technical devices. 
The process of modelling of technical devices with piezoelectric 
materials is complex and requires large amounts of time because 
of the complexity of the phenomena occurring in these systems.  

The correct description of a given system by its mathematical 
model during the design phase is a fundamental condition for 
proper operation of the designed system. Therefore, in the paper 
the processes of modelling, testing and verification of used 
mathematical models of one-dimensional vibrating mechatronic 
system is presented. A series of discrete-continuous and 
continuous-continuous mathematical models with different 
simplifying assumptions was created. Using the created models 
and corrected approximate Galerkin method the characteristic of 
the considered system was designated. The analysis of an 
influence of geometrical and material parameters of system’s 
components on obtained characteristic was conducted, including a 
glue layer between the piezoelectric transducer and a mechanical 
subsystem. To generalize, the obtained results were presented in a 
dimensionless form. A mathematical model that provides the most 
accurate analysis of the system together with maximum 
simplification of used mathematical tools and minimize required 
amount of time was indicated. 

In this paper analysis of mechatronic system with direct 
piezoelectric effect application in mechatronic system is 
presented. In considered system piezoelectric transducers is used 
as vibration damper with the external shunting electric circuit. 
Presented method can be also used in relation to analysis of 
mechatronic systems with piezoelectric actuators – the reverse 
piezoelectric effect applications. In this case piezoelectric 
transducers can be used as actuators glued on the surface of a 
mechanical subsystem in order to generate desired vibrations or 
also to control and damp vibrations in active damping 
applications [2, 3]. In this case electric voltage is generated by 
external control system and applied to the transducer. In the 
presented case piezoelectric transducers are used as passive 
vibration dampers. A passive electric network is adjoined to 
transducer’s clamps. The possibility of dissipating mechanical 
energy with piezoelectric transducers shunted with passive 
electric circuits was experimentally investigated and described in 
many publications [4-7]. There are two basic applications of this 
idea. In the first method, only a resistor is used as a shunting 
circuit and in the second method it is a passive electric circuit 

composed of a resistor and inductor. Many authors have worked 
to improve this idea. For example multimode piezoelectric shunt 
damping systems were described [8]. What is more there are 
many commercial applications of this idea [9]. 

Mechatronic systems with piezoelectric sensors or actuators 
are widely used because piezoelectric transducers can be applied 
in order to obtain required dynamic characteristic of designed 
system. It is very important to use very precise mathematical 
model and method of the analysis of the system to design it 
correctly. It was proved that it is very important to take into 
consideration influence of all elements of analysed system 
including a glue layer between piezoelectric transducer and 
mechanical subsystem [10, 11]. It is indispensable to take into 
account geometrical and material parameters of all system’s 
components because the omission of the influence of one of them 
results in inaccuracy in the analysis of the system. 

Indication of a suitable mathematical model of considered 
system is the first and very important step, which should be done 
as an introduction to the task of synthesis of such kind of 
mechatronic systems. So, the identification of the optimal 
mathematical model that meets the assumed criteria is the main 
purpose of this work. Tasks of analysis and synthesis of 
mechanical and mechatronic systems were considered in Gliwice 
centre in previous works [12-15]. Passive and active mechanical 
systems and mechatronic systems with piezoelectric transducers 
were analysed [16, 17]. Works were also supported by computer-
aided methods [18, 19]. 

2. Description of considered system, 
work methodology and assumptions 

 
 
In this paper the one-dimensional, flexural vibrating 

mechatronic system with passive, piezoelectric vibration damper 
is considered. It was created by applying a piezoelectric 
transducer to the surface of a mechanical subsystem. An external, 
passive electric circuit is adjoined to the transducer’s clamps. 
In the considered system it is a resistor with resistance RZ. 
Vibration of the mechanical subsystem causes, that the piezoelectric 
transducer generates electric voltage in agreement with the direct 
piezoelectric effect. Generated electric charge is dissipated on the 
externally applied resistor and change into a heat. It introduces 
additional stiffness of electromechanical nature [7]. 

In order to analyse the considered system, the approximate 
Galerkin method was used. First, a series of mathematical models 
of the system was developed. Finally, the dynamic flexibility of 
the system was calculated and influence of the system’s 
components prosperities on it was verified.   

 
 

2.1. Mechatronic system with piezoelectric 
passive vibration damper 

 
The considered mechatronic system with passive piezoelectric 

vibration damper is presented in Fig. 1. It is a mechanical 
subsystem - cantilever beam which has a rectangular constant 
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Fig. 1. Shape of the considered system with piezoelectric passive vibration damper 
 
cross-section, length l, width b and thickness hb. Young’s 
modulus of the beam is denoted Eb. A piezoelectric transducer of 
length lp is bonded to the mechanical subsystem’s surface within 
the distance of x1 from a clamped end of the beam. The transducer 
is bonded by a glue layer of thickness hk and Kirchhoff’s modulus 
G. The glue layer has homogeneous properties in overall length.   

The analysed system is excited by externally applied 
harmonic force, described by the equation: 

 

.cos)( 0 tFtF  (1) 
 

Searching dynamic characteristic of the considered system – the 
dynamic flexibility Y is defined in agreement with the equation:  

 

,),( tFtxy Y  (2) 
 

where y(x,t) is the linear displacement of the beam’s sections in 
the direction perpendicular to the beam’s axis. In order to make 
analysis of obtained results easier, the absolute value Y of the 
dynamic flexibility will be designated and presented in graphical 
form. 

It was assumed that the beam is made of steel and 
piezoelectric transducer is a PZT transducer – Pz29 [20]. 
Geometric and material parameters of the system’s elements are 
presented in Table 1. 
 
Table 1. 
The system’s parameters 

Geometric parameters Material parameters 
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Symbols b and b denote density of the beam and transducer. d31 
is a piezoelectric constant, e33

T is a permittivity at zero or constant 
stress, s11

E is flexibility and c11
E is a Young’s modulus at zero or 

constant electric field. 
 
 

2.2. Assumptions 
 
In order to analyse vibration of the systems following 

assumptions were made: 
 material of which the system is made is subjected to Hooke’s 

law, 
 the system has a continuous, linear mass distribution, 
 the system’s vibration is harmonic, 
 planes of sections that are perpendicular to the axis of the beam 

remain flat during deformation of the beam – an analysis is 
based on the Bernoulli’s hypothesis of flat sections, 

 displacements are small compared with the dimensions of the 
system. 
In the considered system internal resistance of the transducer 

(usually 50-100 Ω [21]) is negligibly small in relation to the 
resistance of externally applied electric circuit (400 kΩ), so it was 
omitted. Taking into account an equivalent circuit of the 
piezoelectric transducer presented in Fig. 2, an electromotive 
force generated by the transducer and its electrical capacity are 
treated as a serial circuit. The piezoelectric transducer with an 
external shunt resistor is treated as a serial RC circuit with a 
harmonic voltage source generated by the transducer [1, 21, 22]. 

 

 
 

Fig. 2. The substitute scheme of the piezoelectric transducer with 
an external shunt circuit [1, 21, 22] 

2.2.  Assumptions

 

Piezoelectric materials can be described by a pair of constitutive 
equations which includes the relationship between mechanical 
and electrical properties of transducers [1, 5]. In case of the 
considered system these equations can be written as:  

 

,1313333 TdED T  (3) 

.1113311 TsEdS E  (4) 
 

where: 33
T, d31, s11

E
 are dielectric, piezoelectric and elasticity 

constants. By superscripts T and E value under zero/constant 
strain or zero/constant electric field. In this case the piezoelectric 
constant d31 

was introduced in constitutive equations. It denotes, 
that it is a relation between the transducer’s strain in the direction 
of the axis 1 and electric field in the direction of the axis 3 [1, 5]. 
Symbols D3, S1, T1 and E3 denote electrical displacement, strain, 
stress and electric field intensity in the direction of axes denote by 
the subscripts. In Fig. 3 assumed denotation of axes is presented. 
 

 
 

Fig. 3. Scheme of a piezoelectric transducer with denotation of 
axes of coordinate system 

 
Structural damping of the beam and glue layer was taken into 

account in mathematical models of considered systems using 
Kelvin-Voigt model of material. It was introduced by replacing 
Young’s modulus of the beam and modulus of elasticity in shear 
of the glue layer by equations: 

 

,1
t

EE bbb
 (5) 

,1
t

GG k
 (6) 

 
where: b and k denote structural damping coefficients of the 
mechanical subsystem and the glue layer [10]. 

 
 

2.3. Approximate Galerkin method 
 
It is impossible to use exact Fourier method of separation of 

variables in analysis of mechatronic systems. This is why the 
approximate Galerkin method was used to analyse considered 

system. Verification of this method was the first step. In order to 
check accuracy of the approximate method the mechanical 
subsystem was analysed twice, using the exact Fourier and 
approximate Galerkin methods. The dynamic flexibility of the 
mechanical subsystem was designated and obtained results were 
juxtaposed (see Fig. 4).  
 

 
 

Fig. 4. The dynamic flexibility of the mechanical subsystem: 
exact and approximate methods, for n=1,2,3 

 
In the approximate method solution of differential equation 

was assumed as a simple equation [4, 11]: 
 

,cossin,
1n

n txkAtxy  (7) 

 
where A is an amplitude of vibration. It fulfils only two boundary 
conditions – deflection of the clamped and free ends of the beam. 

 
As it is shown in Fig. 4, inexactness of the approximate 

method is very meaningful for the first three natural frequencies. 
Shifts of values of the system’s natural frequencies are results of 
the discrepancy between the assumed solution of the system’s 
differential equation of motion in the approximate method 
(equation 7) and solution obtained on the basis of graphic solution 
of the system’s characteristic equation in the well known exact 
method. 

The approximate method was corrected for the first three 
natural frequencies of the considered system by introduction 
correction coefficients described by the equation: 

 
,'nnn  (8) 

 
where n and n’ are values obtained using the exact and 
approximate methods, respectively. Results obtained after 
corrections of the approximate Galerkin method are presented in 
Fig. 5. 

The corrected approximate Galerkin method gives a very high 
accuracy and obtained results can be treated as very precise. It can 
be used to analyse mechatronic systems with piezoelectric 
transducers. The considered mechanical subsystem was chosen 
purposely because inexactness of the approximate Galerkin 
method is the biggest in this way of fixing. 
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where: b and k denote structural damping coefficients of the 
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system. Verification of this method was the first step. In order to 
check accuracy of the approximate method the mechanical 
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mechanical subsystem was designated and obtained results were 
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Fig. 4. The dynamic flexibility of the mechanical subsystem: 
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In the approximate method solution of differential equation 

was assumed as a simple equation [4, 11]: 
 

,cossin,
1n

n txkAtxy  (7) 

 
where A is an amplitude of vibration. It fulfils only two boundary 
conditions – deflection of the clamped and free ends of the beam. 

 
As it is shown in Fig. 4, inexactness of the approximate 

method is very meaningful for the first three natural frequencies. 
Shifts of values of the system’s natural frequencies are results of 
the discrepancy between the assumed solution of the system’s 
differential equation of motion in the approximate method 
(equation 7) and solution obtained on the basis of graphic solution 
of the system’s characteristic equation in the well known exact 
method. 

The approximate method was corrected for the first three 
natural frequencies of the considered system by introduction 
correction coefficients described by the equation: 

 
,'nnn  (8) 

 
where n and n’ are values obtained using the exact and 
approximate methods, respectively. Results obtained after 
corrections of the approximate Galerkin method are presented in 
Fig. 5. 

The corrected approximate Galerkin method gives a very high 
accuracy and obtained results can be treated as very precise. It can 
be used to analyse mechatronic systems with piezoelectric 
transducers. The considered mechanical subsystem was chosen 
purposely because inexactness of the approximate Galerkin 
method is the biggest in this way of fixing. 

2.3.  Approximate Galerkin method

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper342

Journal of Achievements in Materials and Manufacturing Engineering

M. Płaczek

Volume 49 Issue 2 December 2011

 
 

Fig. 5. The dynamic flexibility of the mechanical subsystem – 
exact and corrected approximate methods, for n=1,2,3 

 
 

3. A series of mathematical models 
 
 

A series of mathematical models of the considered 
mechatronic system with different simplifying assumptions was 
created. Discrete-continuous and continuous models were 
developed. In the first case of discrete-continuous models, the 
mechanical subsystem was described taking into account a 
continuous mass distribution of the system. The piezoelectric 
transducer with externally applied passive electric network was 
described by the discrete model, taking into account well known 
equations from the analysis of electric circuits. In the second case, 
both mechanical subsystem and piezoelectric transducer were 
described taking into account a continuous mass distribution. In 
all mathematical models the differential equation of the 
mechanical subsystem’s motion was assigned in agreement with 
the d’Alembert’s principle. In all mathematical models impact of 
the piezoelectric transducer was limited by introducing Heaviside 
function, due to the fact that it is attached to the surface of the 
mechanical subsystem on the section from x1 to x2. It was denoted 
by symbol H and described by the equation: 

 
.21 xxHxxHH  (9) 

 
The dynamic flexibility of the considered mechatronic system 

was calculated using the corrected approximate Galerkin method. 
 
 
3.1. Discrete-continuous model with an 
assumption of perfectly bonded piezoelectric 
transducer 
 

In the first mathematical model (model 1) the glue layer 
between the piezoelectric transducer and surface of the 
mechanical subsystem was neglected. It was assumed that the 
transducer’s strain and strain of the mechanical subsystem’s 
surface are exactly the same. After transformation of constitutive 
equations (3 and 4), the bending moment generated by the 
transducer can be described as: 
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where: 
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Symbol c11

E denotes Young’s modulus of the transducer at 
zero/constant electric field (inverse of elasticity constant). UC(t) is 
an electric voltage on the capacitance Cp of the piezoelectric 
transducer. 

Arrangement of forces and bending moments acting in the 
system were being taken into consideration in order to write down 
the differential equation of motion: 
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where: 
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Distribution of the external force was determined using Dirac 

delta function (x-l). 
Equation of the piezoelectric transducer with external electric 

circuit can be described as: 
 

,tUtU
t

tUCR pC
C

PZ  (14) 

 
Symbol UP(t) denotes electric voltage generated by the 

transducer as a result of its strain that can be calculated as a 
quotient of generated electric charge and capacitance of the 
transducer. Equation of electric charge generated by the 
transducer was obtained using constitutive equations and finally, 
equation of the piezoelectric transducer with external electric 
circuit can be described as: 
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3.  A series of mathematical 
models

3.1.  Discrete-continuous model with 
an assumption of perfectly 
bonded piezoelectric transducer

 

are the transducer’s strain and electromechanical coupling 
constant that determines the efficiency of conversion of 
mechanical energy into electrical energy and electrical energy into 
mechanical energy of the transducer [23]. 

System of equations obtained using equations (12) and (15) is 
the discrete-continuous mathematical model of the system under 
consideration with an assumption of perfectly bonded 
piezoelectric vibration damper. 
 
 
3.2. Discrete-continuous model with an 
assumption of pure shear of the glue layer 
 
 

In the second mathematical model (model 2) the impact of the 
glue layer between the transducer and the mechanical subsystem’s 
surface was concerning. The mathematical model of the system 
under consideration was developed in order to obtain more 
detailed representation of the real system. A pure shear of the glue 
layer was assumed. Shear stress was determined according to the 
Hook’s law, assuming small values of pure non-dilatational strain. 
Uniform distribution of shear stress along the glue layer was 
assumed. The transducer’s strain was assumed as a difference of 
the glue layer’s upper surface strain and the free transducer’s strain 
that is a result of electric field on its electrodes. Finally, mathemat-
ical model of the considered mechatronic system was obtained: 
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where: b and k are the beam and the glue layer’s surfaces strains.  

 
 

3.3. Discrete-continuous model taking into 
account a shear stress and eccentric tension of 
the glue layer  
 
 

In the next mathematical model (model 3) the system under 
consideration was modelled as a combined beam in order to unify 
parameters of all components [24]. Shear stress and eccentric 
tension of the glue layer were assumed. The substitute cross-
section of the system was introduced by multiplying the width 
of the piezoelectric transducer and the glue layer by factors: 
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Symbol  denotes the Poisson’s ratio of the glue layer. 

Taking into account the eccentric tension of the glue layer 
under the action of forces acting in the system, the stress on the 
substitute cross-section’s surfaces was assigned. Using the basic 
laws and dependences from theory of strength of materials the 
real strain of the piezoelectric transducer was assigned: 
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Symbols Aw and yw are the area and location of the central axis 
of the substitute cross-section. 

To determine the value of shear stress on the plane of contact 
of the transducer and beam the following dependence was used: 
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where SZ(y) is a static moment of cut off part of the composite 
beam’s cross-section relative to the weighted neutral axis. 
Transverse force T(x,t) can be calculated as a derivative of 
bending moment acting on the system’s cross-section. 

Finally, the discrete-continuous mathematical model of the 
considered system was developed as a system of equations, 
analogical as in the previous cases.  

 
 

3.4. Discrete-continuous model taking into 
account a bending moment generated by the 
transducer and eccentric tension of the glue 
layer  
 
 

Taking into account parameters of the combined beam 
introduced in the previous model, the discrete-continuous 
mathematical model with influence of the glue layer on the 
dynamic characteristic of the system was developed (model 4). 
However, in this model the impact of the piezoelectric transducer 
was described as a bending moment, similarly as in the mathemat-
ical model with the assumption of perfectly attachment of the 
transducer. Homogeneous, uniaxial tension of the transducer was 
assumed and its deformation was described by the equation (20). 
In this case the bending moment generated by the transducer can 
be described as: 
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Fig. 5. The dynamic flexibility of the mechanical subsystem – 
exact and corrected approximate methods, for n=1,2,3 

 
 

3. A series of mathematical models 
 
 

A series of mathematical models of the considered 
mechatronic system with different simplifying assumptions was 
created. Discrete-continuous and continuous models were 
developed. In the first case of discrete-continuous models, the 
mechanical subsystem was described taking into account a 
continuous mass distribution of the system. The piezoelectric 
transducer with externally applied passive electric network was 
described by the discrete model, taking into account well known 
equations from the analysis of electric circuits. In the second case, 
both mechanical subsystem and piezoelectric transducer were 
described taking into account a continuous mass distribution. In 
all mathematical models the differential equation of the 
mechanical subsystem’s motion was assigned in agreement with 
the d’Alembert’s principle. In all mathematical models impact of 
the piezoelectric transducer was limited by introducing Heaviside 
function, due to the fact that it is attached to the surface of the 
mechanical subsystem on the section from x1 to x2. It was denoted 
by symbol H and described by the equation: 
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The dynamic flexibility of the considered mechatronic system 

was calculated using the corrected approximate Galerkin method. 
 
 
3.1. Discrete-continuous model with an 
assumption of perfectly bonded piezoelectric 
transducer 
 

In the first mathematical model (model 1) the glue layer 
between the piezoelectric transducer and surface of the 
mechanical subsystem was neglected. It was assumed that the 
transducer’s strain and strain of the mechanical subsystem’s 
surface are exactly the same. After transformation of constitutive 
equations (3 and 4), the bending moment generated by the 
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Symbol c11

E denotes Young’s modulus of the transducer at 
zero/constant electric field (inverse of elasticity constant). UC(t) is 
an electric voltage on the capacitance Cp of the piezoelectric 
transducer. 

Arrangement of forces and bending moments acting in the 
system were being taken into consideration in order to write down 
the differential equation of motion: 
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Distribution of the external force was determined using Dirac 

delta function (x-l). 
Equation of the piezoelectric transducer with external electric 

circuit can be described as: 
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transducer. Equation of electric charge generated by the 
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equation of the piezoelectric transducer with external electric 
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are the transducer’s strain and electromechanical coupling 
constant that determines the efficiency of conversion of 
mechanical energy into electrical energy and electrical energy into 
mechanical energy of the transducer [23]. 

System of equations obtained using equations (12) and (15) is 
the discrete-continuous mathematical model of the system under 
consideration with an assumption of perfectly bonded 
piezoelectric vibration damper. 
 
 
3.2. Discrete-continuous model with an 
assumption of pure shear of the glue layer 
 
 

In the second mathematical model (model 2) the impact of the 
glue layer between the transducer and the mechanical subsystem’s 
surface was concerning. The mathematical model of the system 
under consideration was developed in order to obtain more 
detailed representation of the real system. A pure shear of the glue 
layer was assumed. Shear stress was determined according to the 
Hook’s law, assuming small values of pure non-dilatational strain. 
Uniform distribution of shear stress along the glue layer was 
assumed. The transducer’s strain was assumed as a difference of 
the glue layer’s upper surface strain and the free transducer’s strain 
that is a result of electric field on its electrodes. Finally, mathemat-
ical model of the considered mechatronic system was obtained: 
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where: b and k are the beam and the glue layer’s surfaces strains.  

 
 

3.3. Discrete-continuous model taking into 
account a shear stress and eccentric tension of 
the glue layer  
 
 

In the next mathematical model (model 3) the system under 
consideration was modelled as a combined beam in order to unify 
parameters of all components [24]. Shear stress and eccentric 
tension of the glue layer were assumed. The substitute cross-
section of the system was introduced by multiplying the width 
of the piezoelectric transducer and the glue layer by factors: 
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Symbol  denotes the Poisson’s ratio of the glue layer. 

Taking into account the eccentric tension of the glue layer 
under the action of forces acting in the system, the stress on the 
substitute cross-section’s surfaces was assigned. Using the basic 
laws and dependences from theory of strength of materials the 
real strain of the piezoelectric transducer was assigned: 
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Symbols Aw and yw are the area and location of the central axis 
of the substitute cross-section. 

To determine the value of shear stress on the plane of contact 
of the transducer and beam the following dependence was used: 
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where SZ(y) is a static moment of cut off part of the composite 
beam’s cross-section relative to the weighted neutral axis. 
Transverse force T(x,t) can be calculated as a derivative of 
bending moment acting on the system’s cross-section. 

Finally, the discrete-continuous mathematical model of the 
considered system was developed as a system of equations, 
analogical as in the previous cases.  

 
 

3.4. Discrete-continuous model taking into 
account a bending moment generated by the 
transducer and eccentric tension of the glue 
layer  
 
 

Taking into account parameters of the combined beam 
introduced in the previous model, the discrete-continuous 
mathematical model with influence of the glue layer on the 
dynamic characteristic of the system was developed (model 4). 
However, in this model the impact of the piezoelectric transducer 
was described as a bending moment, similarly as in the mathemat-
ical model with the assumption of perfectly attachment of the 
transducer. Homogeneous, uniaxial tension of the transducer was 
assumed and its deformation was described by the equation (20). 
In this case the bending moment generated by the transducer can 
be described as: 

3.2.  Discrete-continuous model with 
an assumption of pure shear of 
the glue layer

3.3.  Discrete-continuous model 
taking into account a shear 
stress and eccentric tension  
of the glue layer

3.4.  Discrete-continuous model 
taking into account a bending 
moment generated by the 
transducer and eccentric 
tension of the glue layer
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Discrete-continuous mathematical model of the system under 
consideration was created as a system of differential equation of the 
mechanical subsystem’s motion and equation of the piezoelectric 
transducer with external electric circuit, treated as a linear RC 
circuit. 
 
 
3.5. Continuous model with an assumption of 
uniaxial tension of the piezoelectric transducer 
 
 

Next, a continuous mathematical model was created (model 5). 
Mechanical subsystem and piezoelectric transducer were described 
taking into account a continuous mass distribution. In this model 
the system under consideration was modelled as the combined 
beam. Uniaxial, homogeneous strain of the transducer was 
assumed and differential equation of motion of the piezoelectric 
transducer was obtained:  
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where p denotes density of the piezoelectric transducer,  denotes 
shearing stress, generated in the glue layer and u(x,t) is the 
transducer’s elements displacement in the direction of its 
geometrical axis:  
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Arrangement of shearing forces and bending moments acting 
in this case on the cut out part of system with length dx are 
presented in Fig. 6. 

 

 
 

Fig. 6. Arrangement of shearing forces and bending moments acting 
on the cut-out part of system with length dx 
 

In this case obtained mathematical model of the system under 
consideration was very complicated and process of the dynamic 
flexibility calculation requires a large amount of work [25]. 

3.6. Continuous model taking into account 
flexural vibration of the piezoelectric 
transducer 
 

The last mathematical model (model 6) of the considered 
mechatronic system was also a continuous model. In this model 
flexural vibration of the piezoelectric transducer was being taken 
into consideration. Differential equations of the mechanical 
subsystem and piezoelectric transducer’s flexural vibration were 
obtained on the basis of an arrangement of forces and bending 
moments acting on the cut-out part of system with length dx, 
presented in Fig. 7. 

 

 
 
Fig. 7. Arrangement of forces and bending moments acting on the 
cut-out part of system with length dx 

 
The considered system was modelled as the combined beam 

and a linear displacement g(x,t) of the transducer’s elements in the 
direction perpendicular to its geometrical axis was described as: 
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Obtained equation of the transducer’s flexural vibrations was: 
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where AP and JP are the transducer’s cross-section area and 
moment of inertia. 

 
 

4. Obtained results – the dynamic 
flexibility of the system under 
consideration 
 

Developed mathematical models of the considered 
mechatronic system with piezoelectric vibration damper were 
used to calculate the dynamic flexibility of the system using the 
corrected approximate Galerkin method. Suitable derivatives of 
the assumed solution of the differential equation of motion (7) 

3.5.  continuous model with an 
assumption of uniaxial tension 
of the piezoelectric transducer

3.6.  continuous model taking into 
account flexural vibration of the 
piezoelectric transducer

4.  Obtained results – the 
dynamic flexibility of the 
system under consideration

 

were inserted in obtained mathematical models. After transfor-
mations, the system’s dynamic flexibility was designated. Process 
of the mechatronic system’s dynamic flexibility calculation was 
presented in details in other publications [4, 11, 24, 25].  

Obtained results (absolute value of the considered mechatronic 
system’s dynamic flexibility) are presented on charts in a half 
logarithmic scale in Fig. 8, for the first three natural frequencies. 

Using developed mathematical models and corrected approx-
imate Galerkin method very similar course of the dynamic 
flexibility were obtained. Shift of the natural frequencies in the 
direction of higher values of the mechatronic system in the 
direction of higher values can be observed. This shift is a result of 
increased stiffness of mechatronic system compared with the 
mechanical subsystem. 

 
 

Model 1 
 

Model 2 

Model 3 
 

Model 4 

Model 5 Model 6 
 

Fig. 8. Absolute value of the dynamic flexibility of mechatronic system with piezoelectric vibration damper, for the first three natural 
frequencies 
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where AP and JP are the transducer’s cross-section area and 
moment of inertia. 

 
 

4. Obtained results – the dynamic 
flexibility of the system under 
consideration 
 

Developed mathematical models of the considered 
mechatronic system with piezoelectric vibration damper were 
used to calculate the dynamic flexibility of the system using the 
corrected approximate Galerkin method. Suitable derivatives of 
the assumed solution of the differential equation of motion (7) 
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imate Galerkin method very similar course of the dynamic 
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direction of higher values can be observed. This shift is a result of 
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Fig. 8. Absolute value of the dynamic flexibility of mechatronic system with piezoelectric vibration damper, for the first three natural 
frequencies 
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Fig. 9. Influence of the piezoelectric transducer’s length on the absolute value of the dimensionless dynamic flexibility of the mechatronic 
system with piezoelectric vibration damper 
 

Precision of the mathematical model of considered system 
has no big influence on the obtained results. There are no 
significant differences between the values of natural vibration 
frequencies of considered systems and course of dynamic 
characteristics, except the second model. In case of the 
mathematical model with the assumption of pure shear of the 
glue layer a very significant shift of values of natural frequencies 

and increase of piezoelectric damper or actuator efficiency were 
observed. These discrepancies are the results of the assumed 
simplifications of the real strain of the transducer and resulting 
generated shear stress in the glue layer. There was also an 
assumption about pure shear of the glue layer, while, in the real 
system, this layer is under the influence of forces that cause the 
eccentric tension of it. 

 

4.1. Analysis of influence of the considered 
mechatronic system’s parameters 
 
 

Developed mathematical models of considered system were 
used to analyse influence of geometric and material system’s 
parameters on obtained dynamic flexibility. This study was carried  

out in dimensionless form in order to generalize obtained results. 
Results are presented in the form of three-dimensional graphs that 
show the course of the dimensionless absolute value of the 
dynamic flexibility in relation to dimensionless frequency of 
externally applied force and dimensionless value of one of the 
system’s parameters. In Fig. 9 to Fig. 11 influence of the selected 
system’s parameters on the dynamic flexibility for the first natural 
frequency are presented. 

 

 
Model 1 

 
Model 2 

 
Model 3

 
Model 4 

 
Model 5

 
Model 6 

 
Fig. 10. Influence of the piezoelectric transducer’s longitudinal modulus of elasticity on the absolute value of the dimensionless dynamic 
flexibility of the mechatronic system with piezoelectric vibration damper 
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Fig. 9. Influence of the piezoelectric transducer’s length on the absolute value of the dimensionless dynamic flexibility of the mechatronic 
system with piezoelectric vibration damper 
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used to analyse influence of geometric and material system’s 
parameters on obtained dynamic flexibility. This study was carried  

out in dimensionless form in order to generalize obtained results. 
Results are presented in the form of three-dimensional graphs that 
show the course of the dimensionless absolute value of the 
dynamic flexibility in relation to dimensionless frequency of 
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Fig. 10. Influence of the piezoelectric transducer’s longitudinal modulus of elasticity on the absolute value of the dimensionless dynamic 
flexibility of the mechatronic system with piezoelectric vibration damper 

4.1.  Analysis of influence of the 
considered mechatronic 
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Fig. 11. Influence of the shunt circuit’s resistance on the absolute value of the dimensionless dynamic flexibility of the mechatronic system 
with piezoelectric vibration damper 

 

5. Conclusions 
 

Realized studies have shown that the corrected approximate 
Galerkin method can be used to analyse mechatronic systems with 
piezoelectric transducers. Verification of the approximate method 
proved that obtained results can be treated as very precise. 

The simplest is the mathematical model with the assumption 
about perfectly bonded piezoelectric transducer. But taking this 
assumption it is impossible to define influence of the glue layer 
on the dynamic characteristic of the system. Using this model it is 
not possible to meet requirements undertaken in this work. 
To take into account properties of the glue layer and its real loads 
to which it is subjected, mathematical models where an eccentric 

5.  conclusions

 

tension of glue layer was considered were developed. Interactions 
between elements of the system were being taken into conside-
ration and real strain of the transducer was determined. The third 
mathematical model is much more complex then the last one, while 
obtained results are very similar. It is therefore concluded that the 
optimal in terms of assumed criteria is the last mathematical 
model where a bending moment generated by the transducer and 
eccentric tension of a glue layer between the piezoelectric 
transducer and surface of the beam were taken into account. 
Using this model it is possible to analyse influence of all 
components of the system, including glue layer between the beam 
and transducer, while it is quite simple at the same time. 
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Indication of the suitable model of a mechatronic system as an introduction to the synthesis task
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Fig. 11. Influence of the shunt circuit’s resistance on the absolute value of the dimensionless dynamic flexibility of the mechatronic system 
with piezoelectric vibration damper 

 

5. Conclusions 
 

Realized studies have shown that the corrected approximate 
Galerkin method can be used to analyse mechatronic systems with 
piezoelectric transducers. Verification of the approximate method 
proved that obtained results can be treated as very precise. 

The simplest is the mathematical model with the assumption 
about perfectly bonded piezoelectric transducer. But taking this 
assumption it is impossible to define influence of the glue layer 
on the dynamic characteristic of the system. Using this model it is 
not possible to meet requirements undertaken in this work. 
To take into account properties of the glue layer and its real loads 
to which it is subjected, mathematical models where an eccentric 

 

tension of glue layer was considered were developed. Interactions 
between elements of the system were being taken into conside-
ration and real strain of the transducer was determined. The third 
mathematical model is much more complex then the last one, while 
obtained results are very similar. It is therefore concluded that the 
optimal in terms of assumed criteria is the last mathematical 
model where a bending moment generated by the transducer and 
eccentric tension of a glue layer between the piezoelectric 
transducer and surface of the beam were taken into account. 
Using this model it is possible to analyse influence of all 
components of the system, including glue layer between the beam 
and transducer, while it is quite simple at the same time. 
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