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Abstract
Purpose: of this paper is to present a tool condition monitoring (TCM) system that can detect tool breakage in 
real time by using a combination of neural decision system, ANFIS tool wear estimator and machining error 
compensation module.
Design/methodology/approach: The principal presumption was that the force signals contain the most useful 
information for determining the tool condition. Therefore, ANFIS method is used to extract the features of tool 
states from cutting force signals. The trained ANFIS model of tool wear is then merged with a neural network 
for identifying tool wear condition (fresh, worn).
Findings: The overall machining error is predicted with very high accuracy by using the deflection module and 
a large percentage of it is eliminated through the proposed error compensation process.
Research limitations/implications: This study also briefly presents a compensation method in milling in order 
to take into account tool deflection during cutting condition optimization or tool-path generation. The results 
indicate that surface errors due to tool deflections can be reduced by 65-78%.
Practical implications: The fundamental limitation of research was to develop a single-sensor monitoring 
system, reliable as commercially available system, but much cheaper than multi-sensor approach.
Originality/value: A neural network is used in TCM as a decision making system to discriminate different 
malfunction states from measured signals.
Keywords: Tool condition monitoring (TCM); Wear; Tool deflection; ANFIS; Neural network; End-milling

Reference to this paper should be given in the following way: 
U. Zuperl, F. Cus, J. Balic, Intelligent cutting tool condition monitoring in milling, Journal of Achievements in 
Materials and Manufacturing Engineering 49/2 (2011) 477-486. 

 
 

1. Introduction 
 
Detection of cutting tool condition is essential for faultless 

machining in flexible manufacturing systems (FMS). An unmanned 
flexible manufacturing system (UFMS) is the most developed 
type of FMS. Such a system replaces human operators with 
robots, thus reducing labour costs and preventing human errors. 
In such an automated and unmanned machining system, a com-
puterized system must have capabilities for monitoring and 
controlling the machining process to perform the role of a human 

operator. Tool condition monitoring (TCM) is a fundamental 
requirement for the control of the machining process. The main 
goal of the development of TCM systems is to increase 
productivity and hence competitiveness by maximizing tool life, 
minimising downtime, reducing scrap and preventing damage. 
What was the traditional ability of the operator to determine the 
condition of the tool based on his experiences and senses is now 
the expected role of the monitoring system. The role of the 
operator is typically supervisory. Usually, the operator is also 
responsible for loading into and unloading parts from several 
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machines in a manufacturing cell, meaning that his time of 
reaction to a problem with any machine will not be sufficient for 
the speed at which machining operations take place on modern 
machine tools. Each tool condition monitoring (TCM) system 
consists of sensors, signal conditioners/amplifiers and a monitor 
[1]. The monitor uses a strategy to analyse signals from the 
sensors and to provide a reliable detection of tool and process 
failures. It can be equipped with a signal visualisation system and 
is connected to the machine control. Many studies have been 
conducted on the monitoring of malfunctions and abnormal 
cutting states of machine tools [2]. With regard to the monitoring 
of cutting tool states, two main factors are tool wear and failure. 
Tool failure has become more important recently since hard tools 
are frequently used in the cutting process.  

There are two techniques for tool wear sensing: direct and 
indirect. The direct technique includes the measuring of the actual 
wear by using radioactive analyses of the chip. Generally, direct 
measurements are avoided because of the difficulty with online 
measurements. For indirect methods of TCM, the following steps 
are to be followed: the use of single or multiple sensors [3] 
to capture process information; the use of signal processing 
methods to extract features from the sensor information; the use 
of decision-making strategy to utilize extracted features for the 
prediction of tool failure. The indirect technique includes the 
measuring of cutting forces, torque, vibration, acoustic emission 
(stress wave energy), sound, temperature variation of the cutting 
tool, power or current consumption of spindles or feed motors, 
and roughness of the machined surface [4]. The recent trend in 
TCM is the multi-sensor approach which is termed sensor 
fusion/sensor integration/sensor synthesis. The idea is to gather 
information from several sensors to make a comprehensive estimate 
of tool wear. The application of TCM in industry has mostly relied 
on robust and reliable sensor signals such as force, power and AE. 
They are relatively easy to install in existing or new machines, 
and do not influence machine integrity and stiffness. 

Recent studies show that force signals contained the most useful 
information for determining the tool condition [5]. However, in 
many cases the use of force sensors is not practical for retrofit appli-
cations and the spindle power signal is often used as an alternative. 

Several different approaches have been proposed to automate 
the tool monitoring function. These include classical statistical 
approaches as well as fuzzy systems and neural networks. For 
instance, Iqbal [6] has developed an approach based on the least-
squares regression for estimating tool wear in machining. Haber 
[7] has measured the flank wear of the cutting tool using 
computer vision. The capacity of artificial neural networks to 
capture nonlinear relationships in a relatively efficient manner has 
motivated Chien and Tsai [8] to apply these networks in 
developing tool wear prediction models. But in such models, the 
nonlinear relationship between sensor readings and tool wear 
embedded in a neural network remains hidden and inaccessible to 
the user [9]. In this study, we attempt to solve this situation by 
using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to 
predict the flank wear of the tool in end-milling processes. This 
model offers the ability to estimate tool wear as its neural network 
based counterpart providing also an additional level of transpar-
ency that neural networks fail to provide. Then, a neural network 
is used as a decision making system to predict the condition of the 
tool. In this study, the cutting forces are used as the indicator of 
the tool flank wear variation.  

2. Problem definition 
 
End-milling is an interrupted cutting process, which means 

that each cutting tooth generates a cyclic cutting force ranging 
from negative to maximum force, and back to negative. This force 
is graphed as a series of peaks (Figure 1).  

Cutting parameters and tool conditions affect the magnitude 
of the resultant force. Therefore, the resultant force FR, generated 
from the X and Y directions, is used in this experiment for detecting 
the tool state. If the tool condition is good, the peak measurement 
of each tooth’s force should be roughly the same during one 
revolution of the tool. If a tooth is broken, it generates a smaller 
peak force because it carries a smaller chip load. As a result, the 
tooth that follows a broken tooth generates a higher peak force 
as it extracts the chip that the broken tool could not. One main 
force principle can be used to detect tool condition: Maximum 
peak force in each revolution should be different in good tools 
and in broken tools [10]. Maximum peak force of a broken tool 
must be larger than that of a good tool.  

 
 

 
 

Fig. 1. Cutting force signal of a good tool and a damaged tool 
 
 
Figure 1 illustrates the diagram of undamaged and broken 

tools. Applying these principles, an in-process tool breakage 
monitoring system was developed for end-milling operations. 
The cutting forces and the machining parameters were selected 
as input factors. 
 
 

3. Methodology and system components 
 
 
The proposed approach consists of three main steps. In step 1, 

an ANFIS model of tool wear is developed from a set of data 
obtained during actual machining tests performed on a Heller 
milling machine using a Kistler force sensor. The trained ANFIS 
model of tool wear is then merged subsequently in step 2 with 

 

a neural network for estimating tool wear condition (fresh, worn). 
Tool deflection that occurs during machining and especially when 
flexible tools, such as end mills are used, can result in dimensional 
errors on workpieces. Therefore, finally in step 3, an error com-
pensation module is used that modifies the cutting conditions, 
compensates for the machining errors due to tool deflection and 
tool wear, without degrading the production performance and the 
machined accuracy. The compensation strategy allows the on-line 
optimization of feed rates or the tool path trajectory in order to 
achieve a specified tolerance. Figure 2 shows the basic architecture 
of the proposed system. 
 
 
3.1. ANFIS based tool wear predictor 

 
The relationship between the machining parameters/sensor 

signals and flank wear is first captured via a network and is 
subsequently reflected in linguistic form with the help of a fuzzy 
logic based algorithm. The estimation design process consists of 
a linguistic rule construction, the partition of fuzzy subsets and 
the definition of the membership function shapes. It uses training 
examples as input and constructs the fuzzy if-then rules and the 
membership functions (MF) of the fuzzy sets involved in these 
rules as output. This process is called a training phase. Two 
different membership functions, the triangular and the trapezoidal, 
were adopted during the training process of ANFIS in this study 
in order to compare the prediction accuracy of flank wear according 
to the two membership functions. After training the estimator, its 
performance was tested under various cutting conditions.  

Generally, a worn tool is not a catastrophic event and when 
detected, it is usually possible to continue machining to the end of 
the current operation. 

This is a typical TCM system where the sensor is used to 
collect the signals during milling through a data acquisition module. 

The signal processing module analyses the machining signals for 
extracting features sensitive to tool wear.  

The features, together with the machining parameters, constitute 
the data set to be used as input to the decision system and the 
estimator. The main purpose of the decision system and the 
estimator is to map the input features to the current state of tool, 
i.e. the amount of tool wear. A multi-layer perceptron neural 
network with the backpropagation algorithm is used in TCM as a 
decision system due to its ability of learning [11], noise suppression 
and parallel processing.  

The advantages of the multi-layer perceptron are described in 
[12].  

A random pattern classifier module divides the data into a 
training and a testing set.  

The training set is used for learning purposes while the testing 
set is used for testing the decision system performance. 

 
ANFIS modelling algorithm 

Using a given input/output data set, the ANFIS method 
constructs a fuzzy inference system (FIS) whose membership 
function parameters are adjusted by using the backpropagation 
algorithm. This allows fuzzy systems to learn from the data they 
are modelling.  

The FIS structure is a network-type structure, which maps 
inputs through input membership functions and associated 
parameters, and then through output membership functions and 
associated parameters to outputs.  

Figure 3 shows the fuzzy rule architecture of ANFIS when the 
triangular membership function is adopted. The architectures shown 
in Figure 3 consist of 31 fuzzy rules.  

The process variables are force sensor readings (FR), cutting 
speed (v), feed rate (f), depth of cutting (AD/RD), machining time 
and flank wear (wB). The domain of definition of these variables 
is normalized in the range (0,1), where 1 corresponds to the 
maximal value of that variable.  
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Fig. 2. Architecture of tool condition monitoring system 
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machines in a manufacturing cell, meaning that his time of 
reaction to a problem with any machine will not be sufficient for 
the speed at which machining operations take place on modern 
machine tools. Each tool condition monitoring (TCM) system 
consists of sensors, signal conditioners/amplifiers and a monitor 
[1]. The monitor uses a strategy to analyse signals from the 
sensors and to provide a reliable detection of tool and process 
failures. It can be equipped with a signal visualisation system and 
is connected to the machine control. Many studies have been 
conducted on the monitoring of malfunctions and abnormal 
cutting states of machine tools [2]. With regard to the monitoring 
of cutting tool states, two main factors are tool wear and failure. 
Tool failure has become more important recently since hard tools 
are frequently used in the cutting process.  

There are two techniques for tool wear sensing: direct and 
indirect. The direct technique includes the measuring of the actual 
wear by using radioactive analyses of the chip. Generally, direct 
measurements are avoided because of the difficulty with online 
measurements. For indirect methods of TCM, the following steps 
are to be followed: the use of single or multiple sensors [3] 
to capture process information; the use of signal processing 
methods to extract features from the sensor information; the use 
of decision-making strategy to utilize extracted features for the 
prediction of tool failure. The indirect technique includes the 
measuring of cutting forces, torque, vibration, acoustic emission 
(stress wave energy), sound, temperature variation of the cutting 
tool, power or current consumption of spindles or feed motors, 
and roughness of the machined surface [4]. The recent trend in 
TCM is the multi-sensor approach which is termed sensor 
fusion/sensor integration/sensor synthesis. The idea is to gather 
information from several sensors to make a comprehensive estimate 
of tool wear. The application of TCM in industry has mostly relied 
on robust and reliable sensor signals such as force, power and AE. 
They are relatively easy to install in existing or new machines, 
and do not influence machine integrity and stiffness. 

Recent studies show that force signals contained the most useful 
information for determining the tool condition [5]. However, in 
many cases the use of force sensors is not practical for retrofit appli-
cations and the spindle power signal is often used as an alternative. 

Several different approaches have been proposed to automate 
the tool monitoring function. These include classical statistical 
approaches as well as fuzzy systems and neural networks. For 
instance, Iqbal [6] has developed an approach based on the least-
squares regression for estimating tool wear in machining. Haber 
[7] has measured the flank wear of the cutting tool using 
computer vision. The capacity of artificial neural networks to 
capture nonlinear relationships in a relatively efficient manner has 
motivated Chien and Tsai [8] to apply these networks in 
developing tool wear prediction models. But in such models, the 
nonlinear relationship between sensor readings and tool wear 
embedded in a neural network remains hidden and inaccessible to 
the user [9]. In this study, we attempt to solve this situation by 
using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to 
predict the flank wear of the tool in end-milling processes. This 
model offers the ability to estimate tool wear as its neural network 
based counterpart providing also an additional level of transpar-
ency that neural networks fail to provide. Then, a neural network 
is used as a decision making system to predict the condition of the 
tool. In this study, the cutting forces are used as the indicator of 
the tool flank wear variation.  

2. Problem definition 
 
End-milling is an interrupted cutting process, which means 

that each cutting tooth generates a cyclic cutting force ranging 
from negative to maximum force, and back to negative. This force 
is graphed as a series of peaks (Figure 1).  

Cutting parameters and tool conditions affect the magnitude 
of the resultant force. Therefore, the resultant force FR, generated 
from the X and Y directions, is used in this experiment for detecting 
the tool state. If the tool condition is good, the peak measurement 
of each tooth’s force should be roughly the same during one 
revolution of the tool. If a tooth is broken, it generates a smaller 
peak force because it carries a smaller chip load. As a result, the 
tooth that follows a broken tooth generates a higher peak force 
as it extracts the chip that the broken tool could not. One main 
force principle can be used to detect tool condition: Maximum 
peak force in each revolution should be different in good tools 
and in broken tools [10]. Maximum peak force of a broken tool 
must be larger than that of a good tool.  

 
 

 
 

Fig. 1. Cutting force signal of a good tool and a damaged tool 
 
 
Figure 1 illustrates the diagram of undamaged and broken 

tools. Applying these principles, an in-process tool breakage 
monitoring system was developed for end-milling operations. 
The cutting forces and the machining parameters were selected 
as input factors. 
 
 

3. Methodology and system components 
 
 
The proposed approach consists of three main steps. In step 1, 

an ANFIS model of tool wear is developed from a set of data 
obtained during actual machining tests performed on a Heller 
milling machine using a Kistler force sensor. The trained ANFIS 
model of tool wear is then merged subsequently in step 2 with 

 

a neural network for estimating tool wear condition (fresh, worn). 
Tool deflection that occurs during machining and especially when 
flexible tools, such as end mills are used, can result in dimensional 
errors on workpieces. Therefore, finally in step 3, an error com-
pensation module is used that modifies the cutting conditions, 
compensates for the machining errors due to tool deflection and 
tool wear, without degrading the production performance and the 
machined accuracy. The compensation strategy allows the on-line 
optimization of feed rates or the tool path trajectory in order to 
achieve a specified tolerance. Figure 2 shows the basic architecture 
of the proposed system. 
 
 
3.1. ANFIS based tool wear predictor 

 
The relationship between the machining parameters/sensor 

signals and flank wear is first captured via a network and is 
subsequently reflected in linguistic form with the help of a fuzzy 
logic based algorithm. The estimation design process consists of 
a linguistic rule construction, the partition of fuzzy subsets and 
the definition of the membership function shapes. It uses training 
examples as input and constructs the fuzzy if-then rules and the 
membership functions (MF) of the fuzzy sets involved in these 
rules as output. This process is called a training phase. Two 
different membership functions, the triangular and the trapezoidal, 
were adopted during the training process of ANFIS in this study 
in order to compare the prediction accuracy of flank wear according 
to the two membership functions. After training the estimator, its 
performance was tested under various cutting conditions.  

Generally, a worn tool is not a catastrophic event and when 
detected, it is usually possible to continue machining to the end of 
the current operation. 

This is a typical TCM system where the sensor is used to 
collect the signals during milling through a data acquisition module. 

The signal processing module analyses the machining signals for 
extracting features sensitive to tool wear.  

The features, together with the machining parameters, constitute 
the data set to be used as input to the decision system and the 
estimator. The main purpose of the decision system and the 
estimator is to map the input features to the current state of tool, 
i.e. the amount of tool wear. A multi-layer perceptron neural 
network with the backpropagation algorithm is used in TCM as a 
decision system due to its ability of learning [11], noise suppression 
and parallel processing.  

The advantages of the multi-layer perceptron are described in 
[12].  

A random pattern classifier module divides the data into a 
training and a testing set.  

The training set is used for learning purposes while the testing 
set is used for testing the decision system performance. 

 
ANFIS modelling algorithm 

Using a given input/output data set, the ANFIS method 
constructs a fuzzy inference system (FIS) whose membership 
function parameters are adjusted by using the backpropagation 
algorithm. This allows fuzzy systems to learn from the data they 
are modelling.  

The FIS structure is a network-type structure, which maps 
inputs through input membership functions and associated 
parameters, and then through output membership functions and 
associated parameters to outputs.  

Figure 3 shows the fuzzy rule architecture of ANFIS when the 
triangular membership function is adopted. The architectures shown 
in Figure 3 consist of 31 fuzzy rules.  

The process variables are force sensor readings (FR), cutting 
speed (v), feed rate (f), depth of cutting (AD/RD), machining time 
and flank wear (wB). The domain of definition of these variables 
is normalized in the range (0,1), where 1 corresponds to the 
maximal value of that variable.  
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Fig. 3. Components of TCM (In-process ANFIS predictor and ANN decision system) 
 

For a first-order Sugeno fuzzy model, a typical rule set with 
31 fuzzy rules can be expressed as: 
Rule i: 
IF (v is Ai) AND (f is Bi) AND (AD/RD is Ci) AND (FR is Di) 
AND (Time is Ei) THEN 
wBi =piv+qif+riAD/RD +siFR+tiTime 
 
where i=1...31; pi, qi, ri, si  and ti are linear parameters and Ai, Bi, 
Ci, Di, Ei are nonlinear parameters. 

The ANFIS architecture is explained in detail in [13]. ANFIS 
applies two techniques in updating parameters.  

For the premise parameters that define the membership 
functions, ANFIS employs gradient descent to fine-tune them.  

For each consequent parameter that defines the coefficients of 
each output equation, ANFIS uses the least-squares method to 
identify parameter This approach is thus called Hybrid Learning 
method because it combines the gradient descent method and the 
least-squares method [14]. 

 
ANFIS modelling algorithm 

The modelling process starts by selecting a data set (input-
output data pairs) and dividing it into a training data set and 
a testing data set. The training data set is used to find initial 
premise parameters for the membership functions by equally 
spacing each of the membership function. A threshold value for 
the error between the actual and the desired output is determined. 
Consequent parameters are found by using the least-squares 
method. Then, an error for each data pair is found. If this error is 
larger than the threshold value, update the premise parameters 

using the gradient descent method as the following (Qnext=Qnov+ d, 
where Q is a parameter that minimizes the error,  the learning 
rate, and d is a direction vector). The process is terminated when 
the error becomes less than the threshold value. Then, the testing 
data set is used to compare the model with the actual system. 
During training in ANFIS, 150 sets of experimental data were 
used to conduct 500 cycles of learning. 

The findings are analysed and discussed in Section 5. 
The neural decision-making system was developed with 

Matlab software. The neural network used to predict the cutting 
tool condition is shown in Figure 3. It has tool-breakage detection 
capability and is based on pattern recognition. The neural network 
stores a number of reference force patterns that are characteristic 
of tool breakage. When a tool tooth breaks, the cutting force 
suddenly rises for a while and then drops to zero. The system 
continuously monitors the signal for a break pattern. If the pattern 
is identified, a break is declared within 10 ms of the breakage.  

Four steps were required to develop a neural decision system. 
In step 1, the network architecture and prediction factors were 
selected. The network had two hidden layers and used a set of 5 
normalized inputs for tool condition prediction: (1) cutting speed, 
(2) feed rate, (3) depths of cut, (4) forces, (5) tool wear. The 
output layer consisted of only two neurons: (1) normal and (2) 
broken/worn.  

In step 2, the learning rate, momentum factor and the number 
of hidden layers/hidden neurons were defined. The number of 
hidden neurons was set at 12, the learning rate was set at 1, and 
the momentum item was 0.4. The number of training/testing 
cycles was 1700. 

 

In step 3, the data set was divided into the training and the 
testing set. 200 data points were used in this study. Good tools 
collected half of these and broken tools collected the rest. All the 
data were scaled.  

It is very difficult to mimic the moment of chipping or breaking 
in an experiment. Therefore, in this study, first, the normal tool 
cuts a part of the workpiece. After confirming that the system 
classified normal cutting state, the cutter was retracted to remove 
one insert. After that, it was checked whether the monitoring 
system classified abnormal cutting state. The same process was 
repeated with the cutter whose one side worked and the other was 
broken. The broken side of the tool possessed varying degrees of 
breakage (0.5 mm x 0.5 mm; 1.5 mm x 1.5 mm; 1.5 mm x 2 mm). 
The damage was limited to the cutting edge. Damage observed 
on the rake surface, such as crater wear, was quite limited. There 
were six cutting passes performed for the down milling cases and 
four cutting passes performed for the up milling cases. Within 
these cutting passes performed, the wear propagation was almost 
linearly related to the cutting time for both the down milling and 
the up milling. For the cases of down milling, the width of flank 
wear was about 0.1mm after the first cutting pass. After the sixth 
cutting path, the width of flank wear was about 0.3 mm. For up 
milling, the development of tool wear was more rapid compared 
with that for down milling. The width of flank wear was over 
0.2 mm even after the first cutting pass. After the fourth cutting 
pass, it reached as high as 0.5 mm, compared with the width of 
flank wear of only 0.19-0.25 mm for the down milling cases after 
the same cutting pass. 

In step 4, the training and testing phase is accomplished. 
During the training stage, the neural network adjusted its internal 
weight values to give correct output results according to the input 
features. Finally, in the last step the trained neural network was 
used to predict tool conditions. 

 
 

3.2. Tool deflection module 
 
The main objective of the deflection module is to determine the 

deflection of end mills under milling forces. For the deflection 
analysis of end mills, the tool holder is assumed to be rigid and the 
cantilever beam model is used. However, the holder and the 
clamping stiffness can also be included in the analysis if they are 
known.  

End mill deflections can be approximated by using the beam 
model. The loading and the boundary conditions of the end mill 
used in the model are shown in Figure 4, where D1 is the mill 
diameter, D2 is the shank diameter, L1 is the flute length, L2 is 
the overall length, F is the point load. Modelling can be unpractical 
and time consuming for each tool configuration in a virtual 
machining environment. Therefore, simplified equations are 
generated to predict deflections of tools for given geometric 
parameters and density. The static characteristics of end mills can 
be shown as: 

N
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E
F

CdeflectionX 4

33

4
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1

 (1) 
where F is the applied force and E is the modulus of elasticity 
(MPa) of the tool material. The geometric properties of the end 
mill are in mm. The constant C is 9.05, 8.30 and 7.93 and constant 
N is 0.950, 0.965 and 0.974 for 4-flute, 3-flute and 2-flute tools, 
respectively [5]. 

 
 

Fig. 4. Cutting force induced tool deflection 
 
 

3.3. Error compensation module 
 
The developed module (see Figure 2) aims at facilitating the 

compensation of surface errors in machining caused by tool 
deflection and tool wear [5]. The measured cutting forces are fed 
into a deflection model for the prediction of dynamic behaviour of 
the tool during cutting. An iterative procedure is used to 
determine the milling error through trial and error of the cutting 
force and deflection. The predicted deflected tool profile is used 
to identify the “real” material volume that is removed during 
machining. As soon as the milling error is obtained, the error 
compensation can be achieved by optimising the tool path or by 
feed rate adjustment. 

Both modifications lead to changes of cutting conditions. 
Figure 5 shows an instance of the tool path with and without 
compensation. Due to cutting force-induced tool deflections, 
some amount of material will be left on the desired surface 
(surface error) as shown in Figure 5a. In this case, the resulted 
milled profile (actual profile) will be different from the desired 
profile and the error depends on many factors, such as cutting 
conditions, tool material, tool overhang, etc. In order to reduce the 
error between actual and desired profiles, one can offset the tool 
towards the machined surface by an amount which depends on the 
local surface error. It is necessary to compute the amount of offset 
or compensation along the entire path of cut.  

The second way is to adjust (decrease) the feed rate in 
sections where the predicted tool deflection is the greatest thus 
avoiding surface error. 

The compensation procedure steps can be formulated as an 
algorithm as shown below: 
1. Measure the cutting forces; 
2. predict the tool deflection; 
3. compare the difference between ideal tool position and 

deflected tool position with the prescribed tolerance value; if 
the difference is within the tolerance value then go to step 1, 
or else reduce the feed rate or modify the tool position; 

4. go to step 1. 
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Fig. 3. Components of TCM (In-process ANFIS predictor and ANN decision system) 
 

For a first-order Sugeno fuzzy model, a typical rule set with 
31 fuzzy rules can be expressed as: 
Rule i: 
IF (v is Ai) AND (f is Bi) AND (AD/RD is Ci) AND (FR is Di) 
AND (Time is Ei) THEN 
wBi =piv+qif+riAD/RD +siFR+tiTime 
 
where i=1...31; pi, qi, ri, si  and ti are linear parameters and Ai, Bi, 
Ci, Di, Ei are nonlinear parameters. 

The ANFIS architecture is explained in detail in [13]. ANFIS 
applies two techniques in updating parameters.  

For the premise parameters that define the membership 
functions, ANFIS employs gradient descent to fine-tune them.  

For each consequent parameter that defines the coefficients of 
each output equation, ANFIS uses the least-squares method to 
identify parameter This approach is thus called Hybrid Learning 
method because it combines the gradient descent method and the 
least-squares method [14]. 

 
ANFIS modelling algorithm 

The modelling process starts by selecting a data set (input-
output data pairs) and dividing it into a training data set and 
a testing data set. The training data set is used to find initial 
premise parameters for the membership functions by equally 
spacing each of the membership function. A threshold value for 
the error between the actual and the desired output is determined. 
Consequent parameters are found by using the least-squares 
method. Then, an error for each data pair is found. If this error is 
larger than the threshold value, update the premise parameters 

using the gradient descent method as the following (Qnext=Qnov+ d, 
where Q is a parameter that minimizes the error,  the learning 
rate, and d is a direction vector). The process is terminated when 
the error becomes less than the threshold value. Then, the testing 
data set is used to compare the model with the actual system. 
During training in ANFIS, 150 sets of experimental data were 
used to conduct 500 cycles of learning. 

The findings are analysed and discussed in Section 5. 
The neural decision-making system was developed with 

Matlab software. The neural network used to predict the cutting 
tool condition is shown in Figure 3. It has tool-breakage detection 
capability and is based on pattern recognition. The neural network 
stores a number of reference force patterns that are characteristic 
of tool breakage. When a tool tooth breaks, the cutting force 
suddenly rises for a while and then drops to zero. The system 
continuously monitors the signal for a break pattern. If the pattern 
is identified, a break is declared within 10 ms of the breakage.  

Four steps were required to develop a neural decision system. 
In step 1, the network architecture and prediction factors were 
selected. The network had two hidden layers and used a set of 5 
normalized inputs for tool condition prediction: (1) cutting speed, 
(2) feed rate, (3) depths of cut, (4) forces, (5) tool wear. The 
output layer consisted of only two neurons: (1) normal and (2) 
broken/worn.  

In step 2, the learning rate, momentum factor and the number 
of hidden layers/hidden neurons were defined. The number of 
hidden neurons was set at 12, the learning rate was set at 1, and 
the momentum item was 0.4. The number of training/testing 
cycles was 1700. 

 

In step 3, the data set was divided into the training and the 
testing set. 200 data points were used in this study. Good tools 
collected half of these and broken tools collected the rest. All the 
data were scaled.  

It is very difficult to mimic the moment of chipping or breaking 
in an experiment. Therefore, in this study, first, the normal tool 
cuts a part of the workpiece. After confirming that the system 
classified normal cutting state, the cutter was retracted to remove 
one insert. After that, it was checked whether the monitoring 
system classified abnormal cutting state. The same process was 
repeated with the cutter whose one side worked and the other was 
broken. The broken side of the tool possessed varying degrees of 
breakage (0.5 mm x 0.5 mm; 1.5 mm x 1.5 mm; 1.5 mm x 2 mm). 
The damage was limited to the cutting edge. Damage observed 
on the rake surface, such as crater wear, was quite limited. There 
were six cutting passes performed for the down milling cases and 
four cutting passes performed for the up milling cases. Within 
these cutting passes performed, the wear propagation was almost 
linearly related to the cutting time for both the down milling and 
the up milling. For the cases of down milling, the width of flank 
wear was about 0.1mm after the first cutting pass. After the sixth 
cutting path, the width of flank wear was about 0.3 mm. For up 
milling, the development of tool wear was more rapid compared 
with that for down milling. The width of flank wear was over 
0.2 mm even after the first cutting pass. After the fourth cutting 
pass, it reached as high as 0.5 mm, compared with the width of 
flank wear of only 0.19-0.25 mm for the down milling cases after 
the same cutting pass. 

In step 4, the training and testing phase is accomplished. 
During the training stage, the neural network adjusted its internal 
weight values to give correct output results according to the input 
features. Finally, in the last step the trained neural network was 
used to predict tool conditions. 

 
 

3.2. Tool deflection module 
 
The main objective of the deflection module is to determine the 

deflection of end mills under milling forces. For the deflection 
analysis of end mills, the tool holder is assumed to be rigid and the 
cantilever beam model is used. However, the holder and the 
clamping stiffness can also be included in the analysis if they are 
known.  

End mill deflections can be approximated by using the beam 
model. The loading and the boundary conditions of the end mill 
used in the model are shown in Figure 4, where D1 is the mill 
diameter, D2 is the shank diameter, L1 is the flute length, L2 is 
the overall length, F is the point load. Modelling can be unpractical 
and time consuming for each tool configuration in a virtual 
machining environment. Therefore, simplified equations are 
generated to predict deflections of tools for given geometric 
parameters and density. The static characteristics of end mills can 
be shown as: 
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where F is the applied force and E is the modulus of elasticity 
(MPa) of the tool material. The geometric properties of the end 
mill are in mm. The constant C is 9.05, 8.30 and 7.93 and constant 
N is 0.950, 0.965 and 0.974 for 4-flute, 3-flute and 2-flute tools, 
respectively [5]. 

 
 

Fig. 4. Cutting force induced tool deflection 
 
 

3.3. Error compensation module 
 
The developed module (see Figure 2) aims at facilitating the 

compensation of surface errors in machining caused by tool 
deflection and tool wear [5]. The measured cutting forces are fed 
into a deflection model for the prediction of dynamic behaviour of 
the tool during cutting. An iterative procedure is used to 
determine the milling error through trial and error of the cutting 
force and deflection. The predicted deflected tool profile is used 
to identify the “real” material volume that is removed during 
machining. As soon as the milling error is obtained, the error 
compensation can be achieved by optimising the tool path or by 
feed rate adjustment. 

Both modifications lead to changes of cutting conditions. 
Figure 5 shows an instance of the tool path with and without 
compensation. Due to cutting force-induced tool deflections, 
some amount of material will be left on the desired surface 
(surface error) as shown in Figure 5a. In this case, the resulted 
milled profile (actual profile) will be different from the desired 
profile and the error depends on many factors, such as cutting 
conditions, tool material, tool overhang, etc. In order to reduce the 
error between actual and desired profiles, one can offset the tool 
towards the machined surface by an amount which depends on the 
local surface error. It is necessary to compute the amount of offset 
or compensation along the entire path of cut.  

The second way is to adjust (decrease) the feed rate in 
sections where the predicted tool deflection is the greatest thus 
avoiding surface error. 

The compensation procedure steps can be formulated as an 
algorithm as shown below: 
1. Measure the cutting forces; 
2. predict the tool deflection; 
3. compare the difference between ideal tool position and 

deflected tool position with the prescribed tolerance value; if 
the difference is within the tolerance value then go to step 1, 
or else reduce the feed rate or modify the tool position; 

4. go to step 1. 

3.2.	�Tool deflection module

3.3.	�Error compensation module

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper482

Journal of Achievements in Materials and Manufacturing Engineering

U. Zuperl, F. Cus, J. Balic

Volume 49 Issue 2 December 2011

 
 

 
 

Fig. 5. Final surface profile before and after compensation; a) without compensation, b) with compensation 
 

The machining experiments were conducted on a variety of 
variable curvature surfaces to assess the compensation module 
and also to know the extent of possible improvement in accuracy 
of machined parts. In carrying out machining experiments, it is 
necessary to distinguish between two types of curved geometries, 
namely convex and concave geometries. Here, the concave type 
of geometry is the one in which the local centre of curvature of a 
workpiece and the tool centre lie on the same side. Cutter deflec-
tions and surface error were estimated based on the methodology 
discussed earlier. The workpiece geometry was first machined 
without compensation. Subsequent to machining, surface error 
was measured along the entire path of cut. The measured surface 
error values were compared with the estimated values. 
 
 

4. Experimental design 
 
Experiments were performed on a HELLER machine tool 

(type BEA1) with FAGOR CNC controller.  
The monitoring involved an end milling process of steel parts 

using two end mill tools [15]: a normal tool and a tool with a 
broken tooth. The cutting tool used in the machining test was a solid 
end milling cutter (R216.24-16050 IAK32P) with four cutting 
edges. The tool diameter was 16 mm. Its helix angle was 10°.  

The corner radius of the cutter was 4 mm. The insert had 
an outer coated layer of TiN exhibiting low friction and welding 
resistance. The workpiece material used in the machining test was 
Ck 45 and Ck 45 (XM) with improved machining properties. 
Workpieces were cut off from a warm-rolled bar. The dimension 
of the workpiece was 200 mm × 70 mm × 70 mm. The workpiece 
was mounted in a 3 component piezoelectric dynamometer (Kistler 
9255) to monitor the cutting forces in the X and Y directions. 
The force dynamometer was mounted on the machining table and 
connected to a 3-channel charge amplifier.  

The signals were monitored by using a fast data acquisition 
card (National Instruments PC-MIO-16E-4) and software written 
with the National Instruments CVI programming package. The 
experimental set-up is shown in Figure 2. Flank wear was 
observed during the experiments. The cutting tool flank wear was 
discontinuously measured with a tool microscope of 0.01 mm 
accuracy. The machining tests were carried out in two types of 
end milling operations: down milling and up milling operations. 
The experiments were carried out for all combinations of the chosen 

cutting parameters and tool wear. In the experiments the cutting 
parameters were set as [16-19]: 0.45 mm/tooth), four levels of 
cutting speed (v1=200, v2=360, v3=340 and v4=480 min-1) and 
three levels of 0.45 mm/tooth),  four levels of cutting speed 
(v1=200, v2=360, v3=340 and v4=480min-1) and three levels of 
radial/axial depth of cut (RD1=1d, RD2=0.5d, RD3=0.25d; AD1= 2, 
AD2=4, AD3=8 mm; d=16 mm-cutting parameter).  

The parameters such as tool diameter, rake angle, etc. were 
kept constant.  
 
 

5. Results and discussion 
 
The in-process sensing technique together with a decision-

making system are essential for the successful operation of TCM. 
The neural network was capable of detecting tool conditions 
accurately in real time.  

The accuracy of the training data was 98.1%, and the 
accuracy of the testing data was 94.9%.  

The results of the neural network testing are shown in Table 1. 
The output node value of a backpropagation neural network 

was mapped as 0.01 for the normal cutting state and 0.99 for the 
tool breakage.  

When the neural network outputs are over 0.9 (tool breakage), 
the neural network sends the signal “Tool broken” to the PC. 
When both neural network outputs are below 0.9, the neural 
network sends the signal “Tool condition Normal”.  

The reason why values over 0.9 were recognized as the 
abnormal state is that the cutter with severe flank wear increases 
power at frequencies higher than tooth-passing frequency, so that 
he neural network may decide about the states incorrectly.  

To evaluate the effects of the threshold value on the 
performance of the neural decision-making system, about 45 
experimental tests were carried out. From the results the following 
conclusions can be drawn: 
 The optimum threshold value ranges from 0.87 to 0.92, 
 The decision system with a threshold value of 0.9 gives the 

smallest tool failure prediction errors. Experimental tests 
have confirmed that this method with the 0.9 threshold has 
monitored tool breakage very accurately. Figures 6a and 6b 
represent the cutting force signals for the normal and the 
broken tool. The developed decision system incorporates 
simple fixed limits for the tool breakage detection. 

 
 

Table 1. 
Partial results of TCM testing (ANFIS wear prediction and ANN tool condition estimation) 

Tool 
conditions 

Input factors ANN outputs ANN 
prediction 

ANFIS 
prediction 
WB, mm F, N n, min-1 F, mm/rev AD, mm RD, mm ANN1 ANN2 

Normal 427.2 440 0.17 1.2 8 0.9 0.1 Normal 0.11 
Broken 777.9 440 0.17 1.2 8 0.02 0.98 Broken 0.24 
Normal 433.9 440 0.13 1.4 8 0.3 0.7 Broken 0.17 
Broken 729.6 440 0.13 1.4 8 0 1 Broken 0.26 
Normal 650.5 440 0.20 1.4 8 0.89 0.11 Normal 0.13 
Broken 925.7 440 0.20 1.4 8 0 1 Broken 0.27 
Normal 614.4 480 0.20 1.4 8 0.88 0.12 Normal 0.15 
Broken 751.9 480 0.20 1.4 8 0.03 0.97 Broken 0.23 
Normal 904.3 360 0.22 1.6 8 0.89 0.11 Normal 0.14 
Broken 991.9 360 0.22 1.6 8 0 1 Broken 0.31 

 

 
 

Fig. 6. Thrust force of normal (a) and broken (b) tool in real time monitoring; (c) Indicative tool breakage force pattern with limits; 
(d) Dynamic limit strategy; (e) Indicative tool breakage force pattern – ceramic 
 

The limits are: L1 (collision), L2 (tool fracture), L3 (worn 
tool) and L4 (missing tool limit). 

In this study, the ANFIS system is used to predict the flank 
wear of the tool in an end milling process.  

A total of 150 sets of data were selected from the total of 300 
sets obtained in the end milling experiments for the purpose 
of training in ANFIS. The other 150 sets were then used for 
testing after the training was completed to verify the accuracy of 
the predicted values of flank wear. The experimental results 
indicate that the proposed ANFIS model has a high accuracy for 
estimating flank wear with short computational time. Figure 7 
shows the scatter diagram of the predicted values and the 
measurement values of flank wear of 150 sets of testing data 
when triangular membership functions are used in ANFIS. 

It shows that the predicted values of flank wear between 0.15 
and 0.4 all follow the 45o line very closely. In other words, the 
predicted values are not far from the experimental measurement 
values (Figure 8). 

 
 

5.1. Quantitative effect of tool flank wear on 
the cutting forces 

 
The study further evaluates the three dynamometer cutting 

force components in order to identify which component is the 
most sensitive to tool wear. The study also shows that tool flank 
wear results in a substantial increase in the force components and 

4.	�Experimental design

5.	�Results and discussion
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and also to know the extent of possible improvement in accuracy 
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of geometry is the one in which the local centre of curvature of a 
workpiece and the tool centre lie on the same side. Cutter deflec-
tions and surface error were estimated based on the methodology 
discussed earlier. The workpiece geometry was first machined 
without compensation. Subsequent to machining, surface error 
was measured along the entire path of cut. The measured surface 
error values were compared with the estimated values. 
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The output node value of a backpropagation neural network 

was mapped as 0.01 for the normal cutting state and 0.99 for the 
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When the neural network outputs are over 0.9 (tool breakage), 
the neural network sends the signal “Tool broken” to the PC. 
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To evaluate the effects of the threshold value on the 
performance of the neural decision-making system, about 45 
experimental tests were carried out. From the results the following 
conclusions can be drawn: 
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simple fixed limits for the tool breakage detection. 
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The limits are: L1 (collision), L2 (tool fracture), L3 (worn 
tool) and L4 (missing tool limit). 

In this study, the ANFIS system is used to predict the flank 
wear of the tool in an end milling process.  

A total of 150 sets of data were selected from the total of 300 
sets obtained in the end milling experiments for the purpose 
of training in ANFIS. The other 150 sets were then used for 
testing after the training was completed to verify the accuracy of 
the predicted values of flank wear. The experimental results 
indicate that the proposed ANFIS model has a high accuracy for 
estimating flank wear with short computational time. Figure 7 
shows the scatter diagram of the predicted values and the 
measurement values of flank wear of 150 sets of testing data 
when triangular membership functions are used in ANFIS. 

It shows that the predicted values of flank wear between 0.15 
and 0.4 all follow the 45o line very closely. In other words, the 
predicted values are not far from the experimental measurement 
values (Figure 8). 

 
 

5.1. Quantitative effect of tool flank wear on 
the cutting forces 

 
The study further evaluates the three dynamometer cutting 

force components in order to identify which component is the 
most sensitive to tool wear. The study also shows that tool flank 
wear results in a substantial increase in the force components and 

5.1.	�Quantitative effect of tool flank 
wear on the cutting forces
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that the maximal thrust force is more sensitive to tool flank wear. 
These findings are used as a primary basis for developing the tool 
condition monitoring strategy.  

Figure 9 shows the evolution of cutting forces, Fx, Fy and Fz 
with the tool flank wear (wB = 0, 0.1, 0.2 and 0.3 mm).  

It can be noted that the cutting forces increase with the tool 
flank wear.  

This result is in agreement with the experimental results found 
by [17]. It is believed that the increase in the force components 
with wear land size is a result of the secondary rubbing or 
ploughing process between the wear land and the workpiece.  

Quantitative comparisons have been carried out based on the 
percentage increase in the “as measured” force components for 
cutting tools with a wear land with respect to those of “sharp” 
tools.   

It is apparent that average deviations in the maximal cutting 
force component are noticeable with about 11.7 and 21.36% for 
0.4 and 0.6 mm wear land sizes, respectively, as compared to the 
sharp tool cutting. 

The corresponding thrust force component shows similar 
trends, but with increased average deviations for the two wear 
land sizes (18.2 and 32.6%, respectively). 
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Fig. 7. Scatter diagram of measured WB and predicted for testing data using triangular membership function 
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Fig. 8. Comparison of measured and predicted flank wear (v=180 m/min, AD=2 mm, f=0.1 mm/tooth) 

 

 
 

Fig. 9. Effect of tool flank wear on cutting forces (Fx, Fy and Fz) cutting parameters: (a) wB = 0 mm, (b) wB = 0.1 mm, (c) wB = 0.2 mm 
and (d) wB = 0.3 mm 
 

6. Conclusion 
 

A system for monitoring tool condition in real time was 
developed and the following results were obtained through 
verification experiments:  
(1) The proposed monitoring system of a cutting process may be 

very useful because of its parallel processing capability;  
(2) It enables monitoring of the cutting process with high 

reliability; the ANFIS component can estimate the flank wear 
progress very fast and accurately, once the maximum cutting 
forces are known.  
A monitoring system using a neural network is able to classify 

various cutting states, such as tool breakage and tool wear. 
In future, different decision making tools, such as fuzzy logic, 
should be applied to see which one could obtain a smaller error 
of detection.  

The following conclusions can be drawn from the analysis:  
 Flank wear could efficiently be predicted by using cutting 

conditions and forces as the fuzzy input variables in the 
ANFIS system. 

 The error of the tool wear values predicted by ANFIS with the 
triangular membership function is only 4%, reaching accuracy 
as high as 96%.  

 When the trapezoidal membership function was adopted, the 
average error was around 5.4%, with an accuracy of 94.6%. 

 The ANFIS system could predict flank wear for different 
cutting conditions with an average percentage deviation of 
4.7%, or an accuracy of 95.3%. 

 The predicted flank wear was found significantly sensitive to 
the measured maximum cutting forces (radial), especially the 
thrust cutting component (Fx). 
This study also briefly presents a compensation method in 

milling in order to take into account tool deflection during cutting 
condition optimization or tool path generation.  

The results indicate that surface errors due to tool deflections 
can be reduced by 65-78%.  

The presented research will be useful in many industrial 
scenarios to achieve quality parts without sacrificing productivity. 
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that the maximal thrust force is more sensitive to tool flank wear. 
These findings are used as a primary basis for developing the tool 
condition monitoring strategy.  

Figure 9 shows the evolution of cutting forces, Fx, Fy and Fz 
with the tool flank wear (wB = 0, 0.1, 0.2 and 0.3 mm).  

It can be noted that the cutting forces increase with the tool 
flank wear.  

This result is in agreement with the experimental results found 
by [17]. It is believed that the increase in the force components 
with wear land size is a result of the secondary rubbing or 
ploughing process between the wear land and the workpiece.  

Quantitative comparisons have been carried out based on the 
percentage increase in the “as measured” force components for 
cutting tools with a wear land with respect to those of “sharp” 
tools.   

It is apparent that average deviations in the maximal cutting 
force component are noticeable with about 11.7 and 21.36% for 
0.4 and 0.6 mm wear land sizes, respectively, as compared to the 
sharp tool cutting. 

The corresponding thrust force component shows similar 
trends, but with increased average deviations for the two wear 
land sizes (18.2 and 32.6%, respectively). 
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Fig. 7. Scatter diagram of measured WB and predicted for testing data using triangular membership function 
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(2) It enables monitoring of the cutting process with high 

reliability; the ANFIS component can estimate the flank wear 
progress very fast and accurately, once the maximum cutting 
forces are known.  
A monitoring system using a neural network is able to classify 

various cutting states, such as tool breakage and tool wear. 
In future, different decision making tools, such as fuzzy logic, 
should be applied to see which one could obtain a smaller error 
of detection.  

The following conclusions can be drawn from the analysis:  
 Flank wear could efficiently be predicted by using cutting 

conditions and forces as the fuzzy input variables in the 
ANFIS system. 

 The error of the tool wear values predicted by ANFIS with the 
triangular membership function is only 4%, reaching accuracy 
as high as 96%.  

 When the trapezoidal membership function was adopted, the 
average error was around 5.4%, with an accuracy of 94.6%. 

 The ANFIS system could predict flank wear for different 
cutting conditions with an average percentage deviation of 
4.7%, or an accuracy of 95.3%. 

 The predicted flank wear was found significantly sensitive to 
the measured maximum cutting forces (radial), especially the 
thrust cutting component (Fx). 
This study also briefly presents a compensation method in 

milling in order to take into account tool deflection during cutting 
condition optimization or tool path generation.  

The results indicate that surface errors due to tool deflections 
can be reduced by 65-78%.  

The presented research will be useful in many industrial 
scenarios to achieve quality parts without sacrificing productivity. 
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