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Materials

Abstract

Purpose: The human mind is consistently interested in new materials having unique properties.  Recently, a 
relatively new field is being investigated which exhibits a negative Poisson’s ratio (NPR), and consequently are 
termed auxetic materials.  
Design/methodology/approach: One of the main reason for interest in auxetic materials is due to the possibility 
of enhanced mechanical properties such as shear modulus, plane strain fracture toughness and indentation 
resistance compared to non auxetic material.  
Findings: Auxetic materials were described concerning their classification, characteristic, properties and 
potential applications.
Research limitations/implications: The paper is an overview the modelling structure and deformation 
mechanisms of auxetic nano-materials.
Originality/value: The paper shows the possibilities of auxetic materials application resulting from their 
mechanical properties.
Keywords: Auxetic; Nano-materials; Negative Poisson’a ratio
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1. Introduction 
 

Auxetic materials are typically divided into two classes in 
terms of their scale, which are the common auxetic materials 
(macro-scale) and nano-scale auxetic materials. This paper, 
mainly concentrates on study of materials having auxetic 
behaviour at the molecular level and investigating their 
deformation mechanisms. 

When a material is stretched in one direction, it tends to 
contract (or, rarely, expand) in the other two directions. 
Conversely, when a sample of material is compressed in one 
direction, it tends to expand (or rarely, contract) in the other two 

directions. A measure of this dimensional change can be defined 
by Poisson’s ratio ( ), 

 

y

x
yx directionloadingtheinstrain

directionlateraltheinstrain

 (1) 
 
where x and y are the strains in the x and y directions, 
respectively. 
 

In fact, for most materials this value is positive (Poisson’s 
ratios ranging between 0 and 0.5) and reflects a need to conserve 
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volume. Negative Poisson’s ratio (NPR) material expands (or 
contracts) laterally when stretched (or compressed), in contrast to 
ordinary materials. These new types of materials were named 
“auxetic” by Evans [1]. “Auxetic” comes from the Greek word 
auxetos, meaning “that which may be increased”. 
Consider, as an example, auxetic ultra high molecular weight 
polyethylene (UHMWPE) proposed and fabricated by Alderson & 
Evans, 1992 to give a general idea as to what is the difference 
between auxetic and conventional material and to visualize the 
deformation mechanism (See Fig. 1) [2]. 
 

 
 
Fig. 1. Schematic diagram of structural changes observed in 
microporous UHMWPE undergoing tensile loading in the 
longitudinal direction: Non-auxetic (A) and auxetic (B) deformation 
due to fibril hinging in a nodule-fibril microstructure [2] 
 

Fig. 1(a) on the top shows schematically the geometry and 
deformation of a common material undergoing lateral contraction 
for loading with a tensile longitudinal stress. Fig. 1(b) on the 
bottom shows auxetic behaviour in which the undeformed 
material (left) responds to the tensile longitudinal stress with 
lateral expansion (right). 
 
 

2. Auxetic materials properties  
 

Recently, the investigation of auxetic materials has attracted 
significant attention.  One of the reasons for interest in auxetic 
materials comes from the fact that negative Poisson’s ratio can 
lead to enhancement in other mechanical properties, including: 
 Shear modulus [3,4], 
 Indentation resistance [5,6], 
 Dynamic properties [7,8], 
 Fracture toughness [9]. 

 
Shear modulus 
 

Auxetic materials have higher resistance to shear strain, which 
can be qualitatively explained by the relationships between shear 
(or rigidity) modulus G, Young’s modulus E, bulk modulus K (the 
inverse of the compressibility) and Poisson’s ratio . For isotropic 
materials the relationships between these constants are:  
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The Poisson's ratio of a stable isotropic material cannot be 
less than -1.0 or greater than 0.5 due to the requirement that the 
Young’s modulus, shear modulus and bulk modulus have positive 
values [10]. However, the Poisson’s ratio can exceed that limits in 
certain direction for anisotropic materials [11]. 

For isotropic materials, when Young’s modulus (E) remains 
unchanged, the values of the shear modulus (G) and the bulk 
modulus (K) can be altered through the changes in Poisson’s ratio 
( ) (Eqs. 3 and 4). E is at least twice the value of G for positive 
Poisson’s ratio materials. Conversely, E reduces to below 2G 
when  is negative.  For example, E=G when =-0.5 and E 0 
when -1. In other words, when decreasing  to -1, the shear 
modulus tends to very high values and the Young’s modulus 
decreases to low values, which makes a solid difficult to shear but 
easy to deform.  K also decreases as -1, which means the 
material becomes hard to shear but highly compressible. When  
approaches +0.5, the shear modulus (G) is greatly exceeded by the 
bulk modulus (K), which makes the material incompressible but 
easy to shear. 
 
Indentation response 
 

For isotropic materials, the indentation resistance (or hardness) 
(H) is inversely proportional to (1- 2) for a given pressure, 
defined as: 
 

)1( 2

EH
 (6) 

 

where the value of  relates to the theoretical analysis used.  
1stands for uniform pressure distribution [12] and 3/2

is for Hertzian indentation [13]. 
 

Eq. 6 shows the indentation resistance tends to infinity with 
increase in the magnitude of Poisson’s ratio ( ) for a given value 
of Young’s modulus (E). As already noted, the range of Poisson’s 
ratios for isotropic materials is -1<  <0.5, and so auxetic isotropic 
material show enhancements in indentation resistance when -1<  
< -0.5. As  approaches -1, the indentation resistance towards 
infinity. Enhanced indentation resistance of auxetic materials has 
been demonstrated through investigation of synthetic auxetic 
materials (i.e. polymeric and metallic foams [5,6]; and 
microporous polymers [14]). A schematic of indentation response 
is illustrated in Fig. 2 for both non-auxetic and auxetic materials 
subjected to compressive impact loading [15]. 
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volume. Negative Poisson’s ratio (NPR) material expands (or 
contracts) laterally when stretched (or compressed), in contrast to 
ordinary materials. These new types of materials were named 
“auxetic” by Evans [1]. “Auxetic” comes from the Greek word 
auxetos, meaning “that which may be increased”. 
Consider, as an example, auxetic ultra high molecular weight 
polyethylene (UHMWPE) proposed and fabricated by Alderson & 
Evans, 1992 to give a general idea as to what is the difference 
between auxetic and conventional material and to visualize the 
deformation mechanism (See Fig. 1) [2]. 
 

 
 
Fig. 1. Schematic diagram of structural changes observed in 
microporous UHMWPE undergoing tensile loading in the 
longitudinal direction: Non-auxetic (A) and auxetic (B) deformation 
due to fibril hinging in a nodule-fibril microstructure [2] 
 

Fig. 1(a) on the top shows schematically the geometry and 
deformation of a common material undergoing lateral contraction 
for loading with a tensile longitudinal stress. Fig. 1(b) on the 
bottom shows auxetic behaviour in which the undeformed 
material (left) responds to the tensile longitudinal stress with 
lateral expansion (right). 
 
 

2. Auxetic materials properties  
 

Recently, the investigation of auxetic materials has attracted 
significant attention.  One of the reasons for interest in auxetic 
materials comes from the fact that negative Poisson’s ratio can 
lead to enhancement in other mechanical properties, including: 
 Shear modulus [3,4], 
 Indentation resistance [5,6], 
 Dynamic properties [7,8], 
 Fracture toughness [9]. 

 
Shear modulus 
 

Auxetic materials have higher resistance to shear strain, which 
can be qualitatively explained by the relationships between shear 
(or rigidity) modulus G, Young’s modulus E, bulk modulus K (the 
inverse of the compressibility) and Poisson’s ratio . For isotropic 
materials the relationships between these constants are:  
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The Poisson's ratio of a stable isotropic material cannot be 
less than -1.0 or greater than 0.5 due to the requirement that the 
Young’s modulus, shear modulus and bulk modulus have positive 
values [10]. However, the Poisson’s ratio can exceed that limits in 
certain direction for anisotropic materials [11]. 

For isotropic materials, when Young’s modulus (E) remains 
unchanged, the values of the shear modulus (G) and the bulk 
modulus (K) can be altered through the changes in Poisson’s ratio 
( ) (Eqs. 3 and 4). E is at least twice the value of G for positive 
Poisson’s ratio materials. Conversely, E reduces to below 2G 
when  is negative.  For example, E=G when =-0.5 and E 0 
when -1. In other words, when decreasing  to -1, the shear 
modulus tends to very high values and the Young’s modulus 
decreases to low values, which makes a solid difficult to shear but 
easy to deform.  K also decreases as -1, which means the 
material becomes hard to shear but highly compressible. When  
approaches +0.5, the shear modulus (G) is greatly exceeded by the 
bulk modulus (K), which makes the material incompressible but 
easy to shear. 
 
Indentation response 
 

For isotropic materials, the indentation resistance (or hardness) 
(H) is inversely proportional to (1- 2) for a given pressure, 
defined as: 
 

)1( 2

EH
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where the value of  relates to the theoretical analysis used.  
1stands for uniform pressure distribution [12] and 3/2

is for Hertzian indentation [13]. 
 

Eq. 6 shows the indentation resistance tends to infinity with 
increase in the magnitude of Poisson’s ratio ( ) for a given value 
of Young’s modulus (E). As already noted, the range of Poisson’s 
ratios for isotropic materials is -1<  <0.5, and so auxetic isotropic 
material show enhancements in indentation resistance when -1<  
< -0.5. As  approaches -1, the indentation resistance towards 
infinity. Enhanced indentation resistance of auxetic materials has 
been demonstrated through investigation of synthetic auxetic 
materials (i.e. polymeric and metallic foams [5,6]; and 
microporous polymers [14]). A schematic of indentation response 
is illustrated in Fig. 2 for both non-auxetic and auxetic materials 
subjected to compressive impact loading [15]. 
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