
Research paper242 © Copyright by International OCSCO World Press. All rights reserved. 2012

VOLUME 54

ISSUE 2

October

2012
of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

Computer modelling and analysis of 
microstructures with fibres and cracks

P. Fedeliński * 
Department of Strength of Materials and Computational Mechanics,  
Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
* Corresponding e-mail address: piotr.fedelinski@polsl.pl

Received 02.08.2012; published in revised form 01.10.2012

Analysis and modelling

Abstract
Purpose: The aim of the research is to formulate the boundary element approach, develop the computer codes 
and analyze microstructures containing fibres and cracks. The computer codes can be used to analyze influence 
of fibres and cracks on stress fields and effective properties of materials.
Design/methodology/approach: The relation between boundary displacements and tractions is established 
by using appropriate boundary integral equations. The variations of boundary coordinates, displacements and 
tractions are interpolated by using nodal values and shape functions. Additionally, equations of motion and 
equilibrium equations are applied for rigid fibres.
Findings: The boundary element method can be simply and effectively used for materials containing fibres and 
cracks. The stress fields for a single fibre computed by the present approach agree very well with analytical 
results. The fibre, which is perpendicular to the crack has larger influence on stress intensity factors than the 
fibre, which is parallel to the crack.
Research limitations/implications: The proposed method is efficient for linear elastic materials. For other 
materials the boundary element method requires fundamental solutions, which have complicated forms. The 
developed computer codes can be extended to materials containing many randomly distributed fibres and cracks.
Practical implications: The present method can be used to analyze and optimize strength and stiffness of 
materials by a proper reinforcement by fibers.
Originality/value: The original value of the paper is the analysis of influence of distribution of rigid fibres on 
effective properties of composites and the influence of positions of a fibre and a crack on stress intensity factors.
Keywords: Computational mechanics; Boundary element method; Fibre; Crack; Effective properties

Reference to this paper should be given in the following way: 
P. Fedeliński, Computer modelling and analysis of microstructures with fibres and cracks, Journal of 
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1. Introduction

Fibres are used in composite materials in order to increase 
strength and stiffness of structures. If the stiffness of fibers is 
much greater than the matrix then the fibers can be modelled as 
rigid stiffeners in a deformable matrix. An overview of methods 
for analysis of solids with inclusions and cracks was presented by 
Mura [1]. 

Single rigid fibres in an infinite domains were analyzed by 
analytical methods and composites containing many fibres - by 
computational methods. Dundurs and Markenscoff [2] presented a 
Green’s function formulation for rigid thin lamellar inclusions 
that are bounded to the surrounding material. The authors call 
such inclusions anticracks because they transmit tractions and 
prevent displacement discontinuity. The paper presents stress 
fields for an anticrack loaded by concentrated forces, a 
concentrated couple and an edge dislocation. Li and Ting [3] 

1.	�Introduction

analyzed a line inclusion in an anisotropic elastic infinite plate 
subjected to uniform loading at infinity. They used the Stroh 
formalism to calculate the displacement and stress fields for the 
rigid and elastic inclusion. Liu et al. [4] applied the fast multipole 
boundary element method (BEM) to analyze composites 
reinforced by nanotubes. They calculated effective material 
properties of composites modelled as three-dimensional structures 
having large number of degrees of freedom.  

Pingle et al. [5] used the duality principle to derive rigid line 
inclusion solutions from the crack solutions. They computed 
stress fields around a rigid line inclusion and derived a 
compliance contribution tensor for a single and multiple line 
inclusions. Gorbatikh et al. [6] determined the relation between 
stress intensity factors at the tips of rigid line inclusions and 
effective compliance of the material. 

A problem of interaction between rigid-line inclusions and 
cracks was presented in several papers. Hu et al. [7] analyzed an 
interaction of cracks and rigid fibers near the interface between 
different materials using integral equations. Salgado and Aliabadi 
[8] modelled plates with cracks reinforced by stiffeners by the 
dual BEM. Plates with many growing cracks were considered. 
Dong et al. [9] used the BEM to analyze an interaction of cracks 
and fibers in infinite plates. Dong and Lee [10] used the boundary 
integral approach to analyze double periodic array of cracks/rigid-
line inclusions in an infinite isotropic plate. The method was used 
to compute stress intensity factors and effective elastic properties. 
Dong [11] presented the integral equation formulation for infinite 
homogenous isotropic plate containing inclusions, rigid lines and 
cracks. The influence of distance and material properties of 
inclusions on stress intensity factors were studied.  

The boundary element method (BEM) is a versatile computer 
method which is used in different areas of solid mechanics [12]. 
One of the new areas of the BEM is mechanics solids containing 
many cracks and inclusions. Such problems can be efficiently 
analyzed by the BEM, which requires discretization of the 
external boundary, fibres and crack edges. The formulation and 
application of the BEM for a single rigid fibre in a finite plate was 
presented by Fedelinski [13]. In the present work the method is 
extended and applied to solids with multiple rigid-line 
reinforcements. The analysis of representative volume elements 
containing many randomly distributed cracks was shown by 
Fedelinski [14]. The influence of the volume density of cracks on 
stress intensity factors and overall stiffness was presented. 

The aim of this work is to present the formulation and 
numerical results for statically loaded, linear elastic and isotropic 
finite plates with rigid straight fibers and cracks obtained by the  
BEM. The paper shows the influence of distribution of rigid fibres 
on effective properties of composites and an influence of 
positions of a fibre and a crack on stress intensity factors. 

 

2. Boundary element method for 
plates with rigid fibres
 
2.1. Boundary integral equations for a plate 
with rigid fibres 
 

Consider a plate made of homogenous, isotropic and linear 
elastic material. The boundary of the plate is denoted by  and its 

domain by  (Fig. 1). The plate is statically loaded along the 
external boundary  by boundary tractions tj and the domain  by 
body forces fj. The relation between the loading of the plate and its 
displacements can be expressed by the Somigliana identity [12] 
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where: x’ is the collocation point, for which the above integral 
equation is applied, x is the boundary point, X  is the domain point 
and cij is a constant, which depends on the position of the point x’, 
Uij and Tij are the Kelvin fundamental solutions of elastostatics. In  
equations the Einstein summation convention is used and the 
indices for two-dimensional problems have values i,j=1,2. 

 

 
 

Fig. 1. Elastic plate - loading and displacements 
 

Assume that the plate is reinforced by straight, thin and rigid 
fibres, which are perfectly bonded to the matrix. If the plate is 
deformed then forces of interaction occur along the lines of 
attachment of fibers (Fig. 2). These forces of interaction can be 
treated as particular body forces acting along the lines in the 
domain of the body. The boundary integral equation (1) for the 
plate loaded by boundary tractions and forces of interaction of 
fibres has the form  

 

1

( ') ( ') ( ', ) ( ) ( )

( ', ) ( ) ( ) ( ', ) ( ) ( )
n

ij j ij j

N
n

ij j ij j n
n

c x u x T x x u x d x

U x x t x d x U x X t X d X

,  (2) 
 
where: N is the number of fibres, n is the line of attachment and 
tj

n are the forces of interaction.  
 

 
 

Fig. 2. Elastic plate with fibres 
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2.	�Boundary element method 
for plates with rigid fibres

2.1.	�Boundary integral equations  
for a plate with rigid fibres
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2.2. Displacements and equations of 
equilibrium for rigid fibres 
 

 
 

Fig. 3. Displacements of the rigid fibre 
 

 
 

Fig. 4. Forces acting on the fibre 
 
Deformations of the matrix influence displacements of fibres. 

The displacement of an arbitrary point x of the fibre can be 
expressed by the displacements of the fibre tip xo and the angle of 
rotation of the fibre  (Fig. 3). For small angles of rotation of 
fibres, the components of displacements of an arbitrary point of 
the fibre are expressed in the form 
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2 2( ) ( ) ( )cosou x u x r x ,   (4) 
 

where:   is the initial angle between the fibre and the axis x1 of 
the global coordinate system, r is the distance between the point x 
and the fibre tip xo. 

 
The considered structure and therefore each fibre is in 

equilibrium. The forces acting on each fibre (Fig. 4) should 
satisfied the following equilibrium equations   
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The last equation (7) is the equation of moments of forces 

with respect of the fibre tip xo. 

2.3. Numerical implementation of the 
method 

 
The boundary of the plate and the fibres are divided into 

boundary elements (Fig. 5). In the developed computer code 3-
node quadratic boundary elements are used. Along the external 
boundary of the plate the variations of coordinates, displacements 
and tractions, and along the fibres the variations of interaction 
forces are interpolated. The boundary integral equations (2) are 
used for nodes along the external boundary and the fibres.   

The displacements of fibre nodes can be expressed by the 
displacements of fibre tips and their angles of rotation, by using 
Eqs (3) and (4). These equations can be written in the following 
matrix form 

 
fu Iu ,   (8) 

 
where the matrix u contains the components of displacements of 
fibre nodes, the matrix I depends on the position of nodes and the 
matrix uf  contains components of displacements of  fibre tips and 
their angles of rotation. 
 

 
 

Fig. 5. Discretization of the matrix and fibres by quadratic 
boundary elements 

 
The equilibrium equations for fibres (5), (6) and (7) can be 

written in the matrix form   
 

0fEt
, (9) 

 
where the matrix E depends on the position of fibre nodes and the 
matrix tf  contains nodal values of components of tractions in 
fibres. The matrix E is obtained by integration of expressions in 
Eqs (5), (6) i (7), by assuming quadratic variations of forces along 
the fibres. Because the equilibrium equations have very simple 
forms, the integrals are computed analytically.  

 
Boundary integral equations (2), supplied with Eqs (8) and (9) 

can be written in the matrix form 
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where the submatrices with the index e are related to the external 
boundary and the submatrices denoted by the index f are related 

2.2.	�Displacements and equations  
of equilibrium for rigid fibres

2.3.	�Numerical implementation  
of the method

to the fibres. The submatrices H and G depend on boundary 
integrals of fundamental solutions, shape functions and are 
integrated numerically by using the Gauss quadrature. 

Next the system of algebraic equations is rearranged. The 
unknown quantities are on the left side of the equation and the 
known quantities on the right side of the equation. The first 
modification refers to the unknown interaction forces tf 
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In the final modification the known and unknown boundary 

conditions are rearranged. The modified matrix equation is solved 
and the unknown displacements and tractions along the external 
boundary and the displacements and interaction forces for fibres 
are obtained. 

 
 

3. Boundary element method for 
plates with cracks 
 
 
3.1. Boundary integral equations for a plate 
with cracks 
 

The method is applied to a linear elastic, homogeneous and 
isotropic body containing a crack. The boundary of the body  
consists of the external boundary  e and two crack surfaces  + 
and  -, as shown in Fig. 6. 

 

 
 

Fig. 6. Elastic plate with a crack 
 

The displacement equation for points, which belong to the 
smooth crack surfaces has the form [15]: 
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where x’ and x” are coincident points on the opposite crack 
surfaces. The traction equation for the same points is [15]: 
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where Ukij(x’,x) and Tkij(x’,x) are the fundamental solutions of 
elastostatics and ni(x’) is an outward normal unit vector at the 
collocation point. 
 
 
3.2. Numerical implementation of the method  
 

 
 

Fig. 7. Discretization of the plate with a crack by quadratic 
boundary elements 
 

The boundary  of the body is divided into boundary 
elements. A distinct set of boundary integral equations is obtained 
by applying the displacement equation (1) for collocation nodes 
along the external boundary, the displacement equation (12) and 
the traction equation (13) simultaneously for coincident nodes 
along both crack faces. Quadratic elements are used for the 
discretization of the boundary, as shown in Fig. 7. After 
discretization and integration the following matrix equation is 
obtained: 
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where ue, u+, u- and te, t+, t- contain nodal values of displacements 
and tractions along the external and opposite crack surface; the 
submatrices H and G depend on the fundamental solutions and 
interpolating functions. The columns of matrices H and G are 
reordered according to the boundary conditions.  

 
The matrix equation is solved giving the unknown 

displacements and tractions along boundaries of the body. The 
stress intensity factors (SIF) are computed by using the path 
independent integral [15]. 

 
 

4. Numerical examples
 
To demonstrate the accuracy of the method and possible 

applications several numerical examples are solved. 
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4.1. Single rigid fibre in an infinite plate 
 
 
An infinite plate with a rigid fibre of length 2l is subjected to 

the parallel loading q1 or to the perpendicular loading q2, as shown 
in Fig. 8. The structure is modelled as a finite square plate with 
a rigid fibre and the dimensions of the plate are 10 times larger 
than the fibre. The material of the plate has the Poisson ratio =0.25 
and is in plane stress state. The rigid fibre is divided into 20 
boundary elements and the square plate into 160 boundary ele-
ments. Stresses are computed at 245 internal points in the neigh-
bourhood of the fibre. This field is marked as a grey square in Fig. 8.  

 

 
 

Fig. 8. Rigid fibre in an infinite plate - dimension and loading 
 
a) 

 
b) 

 
 

Fig. 9. Normal stresses in the vicinity of the rigid fibre: a) parallel 
loading - normalized stress 11/q1; b) perpendicular loading - 
normalized stress 22/q2 

The contour plot of normalized stresses 11/q1 for the parallel 
loading q1 and normalized stresses 22/q2 for the perpendicular 
loading q2 are shown in Fig. 9. 

For the parallel loading, stresses 11 have the smallest values 
along the fibre and the largest values along the extension of the 
fibre. For the perpendicular loading the stresses 22 are more 
uniformly distributed in the analyzed field. The maximum values 
of stresses exceed the applied tension by about 2%. The 
distribution of stresses agree very well with stresses computed 
analytically and presented by Pingle et al. [5]. 

 
 

4.2. Multiple rigid fibres in a rectangular plate  
 

A rectangular plate of length 2b and height 2h contains 13 
rigid fibres of length 2l, as shown in Fig. 10. The horizontal 
distance between centres of neighbouring fibres is d1 and the 
vertical distance is d2. The ratios of dimensions are: b/l=5, h/l=4, 
d1/l=3 and d2/l=1.6. The material of the plate has the Poisson ratio 

=0.3 and is in plane strain state. The plate is subjected to the 
horizontal loading q1. Each rigid fibre is divided into 8 boundary 
elements and the external boundary into 72 boundary elements.  
 

 
 
Fig. 10. Rigid fibres in a rectangular plate - dimensions and 
loading 
 

 
 

Fig. 11. Rigid fibres in a rectangular plate - initial shape (dashed 
line) and deformed shape (continuous line) 

 
The initial shape and the deformed shape of the plate are 

shown in Fig. 11. The stress distributions in the matrix, in the 
marked field in Fig. 10, are shown in Fig. 12. The relative 
effective Young modulus is computed as Ec/Em=1.345, where Ec 
and Em are the Young modulus of the composite and the matrix, 
respectively. The effective Poisson ratio of the composite is the 
same as for the matrix. 

4.1.	�Single rigid fibre in an infinite 
plate

4.2.	�Multiple rigid fibres  
in a rectangular plate

The influence of the horizontal and vertical distance between the 
fibres on the effective Young modulus is analysed. The dimensions 
of fibres are constant and the dimensions of the plate are changed 
proportionally to the distance between the fibres. The dependence of 
the relative Young modulus on the horizontal and vertical distance is 
presented in Fig. 13. If the horizontal or vertical distance are smaller 
than half of the length of the fibre the stiffness of the composite 
significantly increases. For the increasing distance between the fibres 
the stiffness of the composite tends to the stiffness of the matrix. 
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Fig. 12. Stress distributions in the matrix: a) 11/q1, b) 22/q1, 
c) 12/q1 

 
4.3. Interaction of a fibre with a crack 

 
 
A square plate contains a crack of length 2a in the centre and 

a fibre of length 2l, as shown in Fig. 14. The dimensions of the 

plate b=h are 10 times larger than the dimension of the crack a. 
Therefore it can be assumed that the plate has infinite dimensions. 
The distance between the fibre and the crack is d. The influence 
of the direction of the fibre (parallel and perpendicular, as shown 
in Fig. 15) with respect to the crack and different distances d on 
stress intensity factors (SIF) is studied. The material properties of 
the plate are: the Young modulus E=2 1011 Pa, the Poisson ratio 

=0.3 and the plate is in plain strain state.  
 

a) 
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Fig. 13. Influence of the distance between the fibres on the 
relative effective Young modulus Ec/Em: a) horizontal distance 
d1/2l, b) vertical distance d2/2l 
 

 
 

Fig. 14. Square plate with a crack and a fibre 
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4.1. Single rigid fibre in an infinite plate 
 
 
An infinite plate with a rigid fibre of length 2l is subjected to 

the parallel loading q1 or to the perpendicular loading q2, as shown 
in Fig. 8. The structure is modelled as a finite square plate with 
a rigid fibre and the dimensions of the plate are 10 times larger 
than the fibre. The material of the plate has the Poisson ratio =0.25 
and is in plane stress state. The rigid fibre is divided into 20 
boundary elements and the square plate into 160 boundary ele-
ments. Stresses are computed at 245 internal points in the neigh-
bourhood of the fibre. This field is marked as a grey square in Fig. 8.  

 

 
 

Fig. 8. Rigid fibre in an infinite plate - dimension and loading 
 
a) 

 
b) 

 
 

Fig. 9. Normal stresses in the vicinity of the rigid fibre: a) parallel 
loading - normalized stress 11/q1; b) perpendicular loading - 
normalized stress 22/q2 

The contour plot of normalized stresses 11/q1 for the parallel 
loading q1 and normalized stresses 22/q2 for the perpendicular 
loading q2 are shown in Fig. 9. 

For the parallel loading, stresses 11 have the smallest values 
along the fibre and the largest values along the extension of the 
fibre. For the perpendicular loading the stresses 22 are more 
uniformly distributed in the analyzed field. The maximum values 
of stresses exceed the applied tension by about 2%. The 
distribution of stresses agree very well with stresses computed 
analytically and presented by Pingle et al. [5]. 
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d1/l=3 and d2/l=1.6. The material of the plate has the Poisson ratio 

=0.3 and is in plane strain state. The plate is subjected to the 
horizontal loading q1. Each rigid fibre is divided into 8 boundary 
elements and the external boundary into 72 boundary elements.  
 

 
 
Fig. 10. Rigid fibres in a rectangular plate - dimensions and 
loading 
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marked field in Fig. 10, are shown in Fig. 12. The relative 
effective Young modulus is computed as Ec/Em=1.345, where Ec 
and Em are the Young modulus of the composite and the matrix, 
respectively. The effective Poisson ratio of the composite is the 
same as for the matrix. 
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proportionally to the distance between the fibres. The dependence of 
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significantly increases. For the increasing distance between the fibres 
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c) 12/q1 
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A square plate contains a crack of length 2a in the centre and 

a fibre of length 2l, as shown in Fig. 14. The dimensions of the 

plate b=h are 10 times larger than the dimension of the crack a. 
Therefore it can be assumed that the plate has infinite dimensions. 
The distance between the fibre and the crack is d. The influence 
of the direction of the fibre (parallel and perpendicular, as shown 
in Fig. 15) with respect to the crack and different distances d on 
stress intensity factors (SIF) is studied. The material properties of 
the plate are: the Young modulus E=2 1011 Pa, the Poisson ratio 

=0.3 and the plate is in plain strain state.  
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Fig. 13. Influence of the distance between the fibres on the 
relative effective Young modulus Ec/Em: a) horizontal distance 
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a)         b) 

         
 

Fig. 15. Fibre: a) parallel, b) perpendicular to the crack 
 
The plate is loaded in the vertical direction by the uniformly 

distributed tractions q2 and supported along the lines of symmetry. 
The external boundary of the plate is divided into 160 elements, 
the crack edges - into 40 elements and the fibre - into 20 quadratic 
boundary elements. The stress intensity factors are normalized 
with respect to the SIF for the crack in the infinite 

plate 2oK q a . The normalized SIF for the crack in the 
considered square plate without the fibre is KI/Ko=1.016.  

The influence of the parallel fibre to the crack on SIFs is 
studied. Fig 16 shows the influence of the relative distance d/a for 
the fibre, which has the same length as the crack. For small 
distance, the fibre increases SIFs, however the influence is small. 
 
a) 

 
b) 

 
 
Fig. 16. Influence of the relative distance d/a on the normalized 
SIF: a) KI/Ko, b) KII/Ko 

Fig. 17 shows the influence of the relative length of the fibre 
l/a on SIFs for the relative distance d/a=0.4. For the fibre smaller 
than the crack the fibre has small influence on SIFs. For longer 
fibres the KI/Ko decreases and KII/Ko increases. 

 
a) 

 
b) 

 
 

Fig. 17. Influence of the relative fibre length l/a on the normalized 
SIF: a) KI/Ko, b) KII/Ko 

 
Next, the influence of the perpendicular fibre to the crack on 

the SIF is studied. Fig. 18a shows the influence of the relative 
distance d/a for the fibre having the same length as the crack and 
Fig. 18b - the influence of the relative length l/a for constant 
distance d/a=0.4. The perpendicular fibre reduces significantly 
SIFs in comparison to the parallel fibre. As expected, the 
influence on the crack tip which is closer to the fibre is stronger.  

 
 

5. Conclusions 
 

The boundary element method is a very efficient method for 
modelling elastic bodies containing rigid fibres and cracks. The 
modelling of such materials is significantly simplified in 
comparison to domain methods, for example the finite element 
method, because nodes are situated only along the external 

5.	�Conclusions

boundary, fibers and crack edges. Positions, shapes and 
dimensions of fibers and cracks and their numbers can be very 
simply modified. 
 
a) 

 
b) 

 
 

Fig. 18. Influence of: a) relative distance d/a, b) relative length 
l/a, on the normalized SIF KI/Ko at the crack tips A and B  
 

The comparison of stresses for the fibre in the infinite plate 
obtained by the present method and the analytical method shows 
that the proposed approach gives very accurate results. For 
distances between the fibres smaller than the half length of fibres 
an influence of interaction of fibres on stress distribution in the 
matrix and significant increase of stiffness can be observed. 

The fibre, which is perpendicular to the crack has larger 
influence on stress intensity factors than the fibre, which is 
parallel to the crack. The perpendicular fibre, which is close to the 
crack tip, can significantly reduce stress intensity factors. 
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Fig. 15. Fibre: a) parallel, b) perpendicular to the crack 
 
The plate is loaded in the vertical direction by the uniformly 

distributed tractions q2 and supported along the lines of symmetry. 
The external boundary of the plate is divided into 160 elements, 
the crack edges - into 40 elements and the fibre - into 20 quadratic 
boundary elements. The stress intensity factors are normalized 
with respect to the SIF for the crack in the infinite 

plate 2oK q a . The normalized SIF for the crack in the 
considered square plate without the fibre is KI/Ko=1.016.  

The influence of the parallel fibre to the crack on SIFs is 
studied. Fig 16 shows the influence of the relative distance d/a for 
the fibre, which has the same length as the crack. For small 
distance, the fibre increases SIFs, however the influence is small. 
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Fig. 16. Influence of the relative distance d/a on the normalized 
SIF: a) KI/Ko, b) KII/Ko 

Fig. 17 shows the influence of the relative length of the fibre 
l/a on SIFs for the relative distance d/a=0.4. For the fibre smaller 
than the crack the fibre has small influence on SIFs. For longer 
fibres the KI/Ko decreases and KII/Ko increases. 
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Fig. 17. Influence of the relative fibre length l/a on the normalized 
SIF: a) KI/Ko, b) KII/Ko 

 
Next, the influence of the perpendicular fibre to the crack on 

the SIF is studied. Fig. 18a shows the influence of the relative 
distance d/a for the fibre having the same length as the crack and 
Fig. 18b - the influence of the relative length l/a for constant 
distance d/a=0.4. The perpendicular fibre reduces significantly 
SIFs in comparison to the parallel fibre. As expected, the 
influence on the crack tip which is closer to the fibre is stronger.  

 
 

5. Conclusions 
 

The boundary element method is a very efficient method for 
modelling elastic bodies containing rigid fibres and cracks. The 
modelling of such materials is significantly simplified in 
comparison to domain methods, for example the finite element 
method, because nodes are situated only along the external 

boundary, fibers and crack edges. Positions, shapes and 
dimensions of fibers and cracks and their numbers can be very 
simply modified. 
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Fig. 18. Influence of: a) relative distance d/a, b) relative length 
l/a, on the normalized SIF KI/Ko at the crack tips A and B  
 

The comparison of stresses for the fibre in the infinite plate 
obtained by the present method and the analytical method shows 
that the proposed approach gives very accurate results. For 
distances between the fibres smaller than the half length of fibres 
an influence of interaction of fibres on stress distribution in the 
matrix and significant increase of stiffness can be observed. 

The fibre, which is perpendicular to the crack has larger 
influence on stress intensity factors than the fibre, which is 
parallel to the crack. The perpendicular fibre, which is close to the 
crack tip, can significantly reduce stress intensity factors. 
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