Dilatometric examination of continuously heated austenite formation in hypoeutectoid steels

B. Pawłowski*
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
* Corresponding e-mail address: bpawlows@agh.edu.pl

Received 03.08.2012; published in revised form 01.10.2012

ABSTRACT

Purpose: of this work is to present possibility of proper determination of pearlite dissolution finish temperature \(\text{Ac}_{1f} \) during heating of hypoeutectoid steels. Design/methodology/approach: The presented schemes of splitting the first derivative curve of hypoeutectoid steels dilatograms are based on experimental dilatograms and their first derivatives obtained by use of the dilatometric technique. Findings: The nine possible schemes of splitting the first derivative curve of hypoeutectoid steels dilatograms were developed. These schemes have been developed for three main cases: ferrite to austenite transformation temperature range is wider than for pearlite to austenite transformation, ferrite to austenite transformation temperature range has the same width as for the pearlite to austenite transformation and ferrite to austenite transformation temperature range is shorter than for pearlite to austenite transformation. Presented schemes are fully compatible with experimental results. Research limitations/implications: Further verification of correctness of the presented schemes and the development of appropriate curve fitting software is needed. Practical implications: Broadening the knowledge on the phase transformation kinetics of hypoeutectoid steels during heating. The basics for the automate process of determination of critical temperatures in steels, especially the \(\text{Ac}_{1f} \) temperature, were established. Originality/value: The originally schemes of splitting the first derivative curve of hypoeutectoid steels dilatograms were developed. Keywords: Critical temperatures in steel; Phase transformation; Heating dilatogram; Pearlite dissolution finish temperature

Reference to this paper should be given in the following way:

1. Introduction

The austenite formation in hypoeutectoid steels during continuous heating consists of two phenomena: pearlite dissolution and proeutectoid ferrite to austenite transformation. In this work austenite formation start temperature on heating will be described as \(\text{Ac}_{1s} \) (s = start), according to Wever and Rose nomenclature \(\text{Ac}_{1b} \) (where \(\text{b} = \text{beginn} \)) [1]. Similarly, pearlite to austenite
transformation finish temperature will be described as Ac$_{1f}$ (f – finish, Wever and Rose nomenclature Ac$_{1e}$ where e = ende). Such split of the Ac$_1$ transformation temperature during heating (and cooling) of steels (hypo-eutectoid, eutectoid and hypereutectoid) is because in steels, contrary to the iron-carbon binary system, eutectoid transformation does not take place at constant temperature (according to the Gibbs’ phase rule for binary system the number of degrees of freedom for eutectoid transformation is equal zero) but at certain temperature range. Austenite formation start temperature used to be marked as Ac$_1$ (here Ac$_{1s}$) but there is no uniform description for pearlite to austenite finish temperature (here Ac$_{1f}$). Only a few authors use the description Ac$_{1s}$ and Ac$_{1f}$ (or, according to Wever and Rose, Ac$_{1b}$ and Ac$_{1e}$) [2-9]. Pearlite dissolution start and finish temperature (A$_{1}$ transformation start and finish temperature in steels on heating) are described in many different ways, as it is presented in Table 1.

<table>
<thead>
<tr>
<th>Ac$_{1s}$ temperature</th>
<th>Ac$_{1f}$ temperature</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1(L)$</td>
<td>$A_1(U)$</td>
<td>[10]</td>
</tr>
<tr>
<td>(L – lower temperature)</td>
<td>(U – upper temperature)</td>
<td></td>
</tr>
<tr>
<td>A_1^-</td>
<td>A_1^+</td>
<td>[11]</td>
</tr>
<tr>
<td>Ac$_1$</td>
<td>Ac$_1^-$</td>
<td>[12]</td>
</tr>
<tr>
<td>(f – finish temperature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac$_1$</td>
<td>Ac$_2$</td>
<td>[13]</td>
</tr>
<tr>
<td>Ac$_1$</td>
<td>T$_C$</td>
<td>[14]</td>
</tr>
<tr>
<td>Ac$_1$</td>
<td>Ac$_1^′$</td>
<td>[15]</td>
</tr>
<tr>
<td>(f – finish temperature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac$_1$</td>
<td>Apf</td>
<td>[16]</td>
</tr>
<tr>
<td>(fp - pearlite finish)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarly to the pearlite to austenite transformation finish temperature, there is no uniform notation for austenite to pearlite transformation start temperature on cooling (according to the nomenclature used in this paper, this temperature should be marked as Ar$_{1f}$). Thus, this temperature is marked, for example, as Ar’ [18], T$_f$ [19], T_f^P [20], T$_{1\lambda}$ [21] or T_E^S [22].

The Ac$_{1f}$ temperature determines the start of the coexistence range of ferrite and austenite during heating as well as the temperature determining the finish of this range, during cooling, in hypo-eutectoid steels. The accurate determination of this coexistence range of ferrite and austenite (i.e. determination of temperatures Ac$_1$ and Ac$_3$, so-called – among others – critical points or critical temperatures) is of great importance in the industrial heat treatment of newer types of sheet steels, such as DP (Dual Phase) and TRIP (Transformation Induced Plasticity) steels, which were designed to pass through a$
ightarrow$γ phase field (intercritical annealing region), with the austenite transforming to martensite on subsequent cooling to room temperature [23]. The amount of austenite within matrix microstructures of ferrite grains depends strongly on temperature of annealing, which should be between Ac$_{1f}$ and Ac$_3$ temperatures. DP and TRIP steels are widely used in the automobile industry for their superior mechanical properties [23].

Approaches for predicting pearlite to austenite transformation start and finish temperatures Ac$_{1}$ and Ac$_{1f}$ (as well as austenite formation finish temperature Ac$_3$) during heating was made by regressing experimentally determined critical temperatures with respect to the steel chemistry (Eq.1, where Ac$_{1}$ means Ac$_{1s}$ [25]) and by use of an artificial neural network method [9, 24, 25].

\[
\text{Ac}_1{[}^\circ\text{C}] = 739 - 22.4 \times C - 6.8 \times Mn + 18.2 \times Si
+ 11.7 \times Cr - 15 \times Ni - 6.4 \times Mo - 5 \times V - 28 \times Cu
\]

An example of artificial neural network application for estimation of the Ac$_1$ temperature (austenite formation start temperature during heating, according to nomenclature used in this work it is Ac$_{1s}$ temperature) is shown in Figure 1 [25]. Forecasting of critical temperatures by use of artificial neural network technology gives better agreement between predicted and experimental values than empirical relationships based on linear multiple regression method. It is due to the synergistic effect of alloying elements on phase transformation in steels [25].

![Fig. 1. Comparison of the experimental Ac$_1$ temperatures with values calculated using the neural network method [25]](image-url)

In Ref. [25] results of predicting critical temperatures Ac$_1$, Ac$_3$, B$_s$ and M$_s$ by use of artificial neural network method were compared with results obtained by use of empirical relationships reported in literature. For example, Pearson correlation coefficient for the neural network model used for predicting Ac$_1$ temperature was equal 0.925 while for Andrews formulae (Eq. 2, [26]) Pearson correlation coefficient was 0.790 [25].

\[
\text{Ac}_3{[}^\circ\text{C}] = 910 - 203 \times \sqrt{C - 15.2} \times Ni + 44.7 \times Si
+ 104 \times V + 31.5 \times Mo + 13.1 \times W
\]

However, the best accuracy in determining the temperatures of austenite formation during continuous heating (as well as other critical temperatures) is obtained using dilatometric method. As stated in Ref. 28, dilatometry is believed to be the best current method for development of data in support of distortion and residual stress predictions because it measures both, phase
transformation kinetics and thermal strains. Nowadays ultra high resolution dilatometers have resolution even up to nanometres (laser dilatometer built after the Michelson-Interferometer principle) [27]. In many cases, especially for proper determination of critical points, such ultra high resolution is not necessary, but sometimes low resolution dilatometric experiments results do not show very small volume changes caused by some phase transformation, as it will be discussed later.

2. Dilatometric examinations

The start temperature of pearlite to austenite transformation (Ac1 temperature) and austenite formation finish temperature (Ac3 temperature) is easy to determine by dilatometric analysis, as it is shown in Figure 2 [28]. Both critical temperatures can be determined from changes in the slope of a strain versus temperature plot. Determination of the critical temperatures from the dilatometric curve is conducted considering that Ac1 corresponds to the temperature at which the expansion deviates from a linear behaviour during heating and the sample starts to contract due to the austenite formation; whereas Ac3 is the temperature at which expansion begins again to depend linearly on temperature once the sample is fully austenitic [29].

![Fig. 2. Dilation strain versus temperature showing determination of Ac1 and Ac3 temperatures [28]](image)

Since Ac1 and Ac3 temperatures are sensitive to heating rate [29-31], the heating rate employed should be noted. According to [28], during the determination of the critical temperatures Ac1 and Ac3, the thermal cycle to be used is to heat the test specimen to 700°C, ± 5°C, at a nominal rate of 10°C/s. Heating must then be continued at a nominal rate of 28°C Celsius per hour (~0.008°C/s) while strain is continuously measured until the Ac1 and Ac3 temperatures are identified.

It should be noted here, that although critical temperatures are sensitive to heating rate (transformation temperatures increase with heating rate) the Ac1 temperature is near the equilibrium temperature Ae1 (calculated with Thermo-Calc [31]) for a 0.3°C/s heating rate as it shown in Figure 3. It can be observed that the increasing heating rate has a greater effect on Ac3 than on Ac1 temperature and the transformation temperatures are higher for ferrite-pearlite microstructure (hot rolled steel) than for tempered martensite microstructure (quenched and tempered steel) in all cases. Temperature differences between hot rolled and quenched and tempered initial states of tested AISI 5150 steel increases also with increasing heating rate, as it is presented in Figure 4 [31].

![Fig. 3. The Ac1 and Ac3 temperatures from dilatometric measurements with different heating rates and calculated Ae1 temperature (dashed line) for AISI 5150 steel [31]](image)

![Fig. 4. Temperature differences (hot rolled – quenched and tempered initial state) for Ac1 and Ac3 temperatures for AISI 5150 steel [31]](image)

Similar effect of heating rate on critical temperatures of low carbon microalloyed steel was also previously reported in Refs. [29, 32]. Experimental Ac1s (originally marked as Ac1) and Ac3 temperatures, as well as Ac1f temperatures (originally marked as Ac3) for four different heating rates are shown in Table 2 (eight different dilatometric curves are shown in Table 2 (eight different dilatometric curves were analysed by the cited authors for the each heating rate in order to determine these temperatures.
The analysis of the dilatograms and its derivatives obtained over many years at the Laboratory of Phase Transformations (by use of high resolution dilatometer DT1000 and ultra high resolution dilatometer L78 RITA) led to the development of nine possible schemes of split of the derivative curves of hypoeutectoid steels heating dilatomographs in temperature range between Ac1s and Ac3 [35].

Table 2. Experimental Ac1s, and Ac3 temperatures, as well as Ac1f temperatures for four different heating rates [29, 32]

<table>
<thead>
<tr>
<th>Heating rate, °C/s</th>
<th>Ac1s, °C</th>
<th>Ac1f, °C</th>
<th>Ac3, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>732 ± 1</td>
<td>756 ± 4</td>
<td>893 ± 4</td>
</tr>
<tr>
<td>0.5</td>
<td>736 ± 2</td>
<td>756 ± 2</td>
<td>889 ± 6</td>
</tr>
<tr>
<td>5</td>
<td>742 ± 2</td>
<td>763 ± 2</td>
<td>897 ± 5</td>
</tr>
<tr>
<td>10</td>
<td>752 ± 4</td>
<td>776 ± 5</td>
<td>905 ± 5</td>
</tr>
</tbody>
</table>

Figure 5 shows dilatometric curve, after continuous heating at 0.05°C/s, where the pearlite to austenite transformation finish temperature Ac1f is marked as AcU.

As stated in Refs. [29, 32], Ac1f (originally AcU) temperature is the temperature at which the first contraction on the dilatometric curve due to the pearlite to austenite transformation finishes. This temperature is less evident to see from the curve ∆L/L0 versus temperature, but easier to determine from the first derivative as it is shown in Figure 6 [29].

In some cases, the first contraction (due to the pearlite to austenite transformation) on the dilatometric curve of hypoeutectoid steel during heating (at 0.05°C/s) is not observed as it is shown in Figure 7 [33], presenting dilatometric examination of C55 carbon steel (which microstructure consists of pearlite with very small amount of proeutectoid ferrite, sample after normalizing annealing), performed at the Laboratory of Phase Transformations, Department of Physical and Powder Metallurgy, AGH University of Science and Technology, by use of the Adamel Lhomargy DT1000 dilatometer, the same type of dilatometer as used in Refs. [29, 32]. As it is shown, determination of pearlite dissolution finish temperature is not possible neither on the dilatometric curve nor on its derivative. Only the pearlite to austenite transformation start temperature (Ac1s temperature) and the austenite formation during heating end temperature (Ac3 temperature) can be determined.

Additional dilatometric examinations during heating of the same C55 carbon steel were performed by use of ultra high resolution Linseis L78 RITA (Rapid Induction Thermal Analysis). The sample of C55 steel, prior to the dilatometric examinations, was normalizing annealed the same way as sample tested by use of DT1000 dilatometer. The obtained dilatogram and its derivative is presented in Figure 8.

By use of a L78 RITA dilatometer, the pearlite to austenite transformation end temperature can be easily estimated from the derivative curve, as it is shown in Figure 8. The L78 RITA dilatometer is characterised by a much better resolution than the DT1000 dilatometer and this enables the determination of a Ac1f temperature, although only from the derivative curve. On the dilatometric curve contraction due to the pearlite to austenite transformation is not clearly observed just as it was in case of examination by use of the DT1000 dilatometer (compare Fig. 7 and Fig. 8). It is rather puzzling, that in the case of C55 steel (containing very small amount of ferrite) the effect related to the finish of the pearlite transformation appears on the left slope of a V-shaped derivative curve but almost identical derivative curve was obtained after heating of Mn-Co steel (Fig. 9) containing also high amount of pearlite in pearlite-ferrite microstructure.

As it was mentioned above the austenite formation in hypoeutectoid steels during continuous heating consists of two phenomena: pearlite dissolution and proeutectoid ferrite to austenite transformation. Both this phase transformation result in contraction on the dilatometric curve.
The analysis of the dilatograms and its derivatives obtained over many years at the Laboratory of Phase Transformations (by use of high resolution dilatometer DT1000 and ultra high resolution dilatometer L78 RITA) led to the development of nine possible schemes of split of the derivative curves of hypoeutectoid steels heating dilatograms in temperature range between \(Ac_1\) and \(Ac_3\) [35].

![Dilatometric curve of C55 carbon steel after heating at 0.05°C/s and its derivative](image1)

Fig. 8. The dilatometric curve of C55 carbon steel after heating at 0.05°C/s and its derivative (L78 RITA dilatometer) [33]

![Dilatometric curve of Mn-Co steel with high amount of pearlite after heating at 0.05°C/s and its derivative](image2)

Fig. 9. The dilatometric curve of Mn-Co steel with high amount of pearlite after heating at 0.05°C/s and its derivative (L78 RITA dilatometer) [34]
3. A split of derivative of hypo-eutectoid steels heating dilatograms

Observed in dilatometric heating curves of hypo-eutectoid steels effect of volume contraction between Ac₁ᵣ and Ac₃ temperatures could be divided into two separate but overlapping phenomena: a contraction due to pearlite to austenite formation and a contraction caused by ferrite to austenite transformation.

The first derivative of dilatometric curve at this temperature range shows effect of volume contraction more accurately and this effect could be divided into two separate phenomena as it is shown in Figure 10 [35].

The magnitude of contraction in derivative components represent the maximum transformation rate and these component curves may be expressed mathematically as follows:

- pearlite to austenite transformation component
 \[\frac{\Delta l}{l_0} / \Delta T = 1 - \alpha_p \cdot e^{-\beta_p T} \]
 (3)

- ferrite to austenite transformation component
 \[\frac{\Delta l}{l_0} / \Delta T = 1 - \alpha_f \cdot e^{-\beta_f (T-D)^2} \]
 (4)

where:
- \(T \) - temperature,
- \(\alpha_p, \alpha_f \) - coefficient proportional to the transformation rate,
- \(\beta_p, \beta_f \) - coefficient proportional to the transformation range,
- \(D \) - temperature shift of \(\alpha \rightarrow \gamma \) vs. pearlite \(\rightarrow \gamma \) transformation.

The nine possible schemes of splitting the first derivative curve of hypo-eutectoid steels dilatograms are presented in Figure 11. These schemes have been developed for three main cases: ferrite to austenite transformation temperature range is wider than for pearlite to austenite transformation (\(\beta_p > \beta_f \) for scheme I, II, III), ferrite to austenite transformation temperature range has the same width as for the pearlite to austenite transformation (\(\beta_f = \beta_p \) for scheme IV, V, VI) and ferrite to austenite transformation temperature range is shorter than for pearlite to austenite transformation (\(\beta_f < \beta_p \) for scheme VII, VIII, IX). The ferrite to austenite maximum transformation rate is respectively higher (\(\alpha_f > \alpha_p \) for scheme I, IV and VII), equal (\(\alpha_f = \alpha_p \) for scheme II, V and VIII) and lower (\(\alpha_f < \alpha_p \) for scheme III, VI and IX) than maximum rate of pearlite to austenite transformation (Table 3).

For all developed schemes additional assumption was made: the ferrite to austenite transformation start temperature is more or less higher than pearlite to austenite transformation start temperature but well below pearlite to austenite transformation start temperature. This assumption is justified by the results of scanning electron microscopy examinations presented, among others, in Refs. [29, 36], showing that during heating austenite nucleation takes place both at pearlite colonies and at ferrite/ferrite grain boundaries.

The schemes I-IX can be slightly modified as a result of the ferrite to austenite start temperature shifting to a higher temperature, but this does not change substantially their appearance, which coincides with the experimental results obtained over many years at the Laboratory of Phase Transformations AGH and cited in the literature. Examples of such modified schemes are presented in Ref. [37].

4. Conclusions

As it was mentioned above, presented schemes are fully compatible with experimental results. Dilatograms and their derivative curves presented in Figure 8 and Figure 9 corresponds with scheme IV and VII where maximum ferrite to austenite transformation rate is higher than maximum pearlite dissolution rate (column \(\alpha_f > \alpha_p \) in Table 3). Experimental dilatogram compatible with scheme V or scheme VIII (column \(\alpha_f = \alpha_p \) in Table 3) and dilatogram compatible with scheme III or scheme VI (column \(\alpha_f < \alpha_p \) in Table 3) are presented in Figures 12 and 13.

Table 3.
The nine possible schemes of splitting the first derivative curve of hypo-eutectoid steels dilatograms

<table>
<thead>
<tr>
<th>Transformation range</th>
<th>Maximum transformation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_f = \beta_p)</td>
<td>(\alpha_f > \alpha_p) scheme I</td>
</tr>
<tr>
<td>(\beta_f > \beta_p)</td>
<td>scheme IV</td>
</tr>
<tr>
<td>(\beta_f < \beta_p)</td>
<td>scheme VII</td>
</tr>
</tbody>
</table>
Fig. 10. Derivative of heating dilatogram (between Ac 1s and Ac 3) shown in Figure 10 [35].

This effect could be divided into two separate phenomena. The transformation range shows the effect of volume contraction more accurately and a contraction caused by ferrite to austenite transformation. Temperatures could be divided into two separate but overlapping ranges.

The nine possible schemes of splitting the first derivative curve of hypoeutectoid steels dilatograms are presented in Table 3.

Table 3. A split of derivative of hypoeutectoid steels heating dilatograms

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Ferrite to austenite transformation component</th>
<th>Pearlite to austenite transformation component</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>β_F > α_F and $\beta_P > \alpha_P$</td>
<td>β_F = α_F and $\beta_P = \alpha_P$</td>
</tr>
<tr>
<td>II</td>
<td>β_F = α_F and $\beta_P > \alpha_P$</td>
<td>β_F > α_F and $\beta_P > \alpha_P$</td>
</tr>
<tr>
<td>III</td>
<td>β_F > α_F and $\beta_P = \alpha_P$</td>
<td>β_F < α_F and $\beta_P = \alpha_P$</td>
</tr>
<tr>
<td>IV</td>
<td>β_F > α_F and $\beta_P < \alpha_P$</td>
<td>β_F = α_F and $\beta_P < \alpha_P$</td>
</tr>
<tr>
<td>V</td>
<td>β_F < α_F and $\beta_P < \alpha_P$</td>
<td>β_F > α_F and $\beta_P < \alpha_P$</td>
</tr>
<tr>
<td>VI</td>
<td>β_F < α_F and $\beta_P < \alpha_P$</td>
<td>β_F = α_F and $\beta_P < \alpha_P$</td>
</tr>
<tr>
<td>VII</td>
<td>β_F > α_F and $\beta_P < \alpha_P$</td>
<td>β_F < α_F and $\beta_P < \alpha_P$</td>
</tr>
<tr>
<td>VIII</td>
<td>β_F = α_F and $\beta_P < \alpha_P$</td>
<td>β_F > α_F and $\beta_P < \alpha_P$</td>
</tr>
<tr>
<td>IX</td>
<td>β_F = α_F and $\beta_P < \alpha_P$</td>
<td>β_F < α_F and $\beta_P < \alpha_P$</td>
</tr>
</tbody>
</table>

Transformation range $D F$, Maximum transformation rate E_F.

Fig. 11. Nine possible schemes of splitting the first derivative curve of hypoeutectoid steels dilatograms

Fig. 12. Experimental dilatogram and its derivative compatible with scheme V or scheme VIII (column $\alpha_F = \alpha_P$ in Table 3) [35].

Assuming correctness of presented schemes and idea of splitting the derivative curve it can be concluded that the temperatures Ac_{1f} determined in the manner presented in Figures 6, 8, 9, 12 and 13 are set incorrectly, with a greater or lesser error (see Figure 14).

Such that error in determining Ac_{1f} temperature is not significantly important for the proper planning of the heat treatment conditions in industrial practice. The Ac_{1f} temperatures are determined by use continuous heating dilatograms while industrial heat treatment consists mostly of annealing (austenitizing) at
constant temperature and as it known [38] the transformation end temperature decreases monotonically with increasing annealing time.

Further verification of correctness of the presented schemes and the development of appropriate curve fitting software can lead to automate the process of determination of critical temperatures in steels, especially the \(\text{Ac}_1 \) temperature.

References

[33] B. Pawłowski, P. Bala, J. Krawczyk, Some factors influencing the determination of eutectoid start and finish temperatures in hypoeutectoid steels, Metallurgy and Foundry Engineering MaFE, AGH University of Science and Technology 35/2 (2009) 121-128.
[34] E. Rożniata, Laboratory of Phase Transformations, Department of Physical and Powder Metallurgy, AGH University of Science and Technology, Cracow, 2012 (unpublished work).