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Abstract
Purpose: The paper presents results of structural research into thermal barrier coatings obtained by the APS. For 
the base the Rene 80 alloy was used, whereas a MeCrAlY-type multicomponent alloy was used for an interlayer.
Design/methodology/approach: Throughout the research an optic microscope as well as a scanning electron 
microscope were employed. Measurements of the formed structure’s porosity were taken.
Findings: It has been observed that application of novelty ceramic powders allows for a possibility of forming 
thermal barrier coatings, which can be used for protecting of the combustion chamber’s surface as well as 
turbine’s blades in an aircraft engine.
Research limitations/implications: Further research into resistance to oxidation of these coatings seems 
necessary for experimental determination of their actual work temperature.
Practical implications: They can be successfully applied in automotive industry for coating of petrol or diesel 
engine’s components.
Originality/value: Investigation into possible applications of two-layer and composite coatings, which may 
improve the work temperature of thermal barrier coatings, is feasible.
Keywords: Ceramics and glasses; Corrosion; Erosion; Material science; Thin and Thick Coatings; Surface treatment
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1. Introduction 
 
Improving efficiency of engine combustion and reducing 

fume emission has caused the turbine temperature in aircraft 
engines to grow significantly over the last 30 years. 

In engines, work temperature of a rotating blade is about 
1050°C where maximum temperatures may reach 1150°C [1,2]. 

In gas turbines, temperatures are sligthly lower (800-950°C) 
but these stem from severe work conditions [3,4]. Continuous 
temperature growth was observed at the turbine inlet, up to 2000K 
(1723°C). This development in the production has been achieved 

1.	�Introduction

thanks to designing of new materials, improvement of blade 
cooling methods as well as introduction of new production 
technologies [2,3,5]. This influenced development of turbine 
blades as well as alloys used for their production. Common 
heat-resistant alloys have been replaced with nickel-based 
alloys. The rise of temperature brought about a need  
of improving the resistance to oxidation and hot corrosion. 

Aluminide coatings were the first protective coatings 
introduced in the 1960s. These coatings were formed through 
chemical vapour deposition carried out with the use of the 
pack cementation method. In the early 1970s [4,6-9] there 
were developed MeCrAl-type multialloy coatings protecting 
from corrosion and high temperatures. Further development 
was connected with introducing Thermal Barrier Coatings 
(TBC). These protect from hot gases. Coatings consist of two 
layers, an external ceramic (Y2O3 - or MgO - stabilized ) ZrO2 
and an MCrAlY metallic interlayer, where M will mostly be 
Co, Ni, Fe. The role of an interlayer is to improve adhesion  
of a ceramic layer to the base and to decrease stresses caused 
by coefficients of thermal expansion of the coating and base 
material. Thermal barriers were at first used for static 
components and only recently have been applied for rotating 
elements. 

The APS, EB-PVD and LPPS methods based on thermal 
spraying of ceramics are the most popular methods of coating 
deposition. Application of protective coatings improves 
reliability and enlengthens the engine’s work time. Most 
popular thermal barrier coating methods are: 

APS (Air Plasma Spraying) - plasma spraying at 
atmospheric pressure, 

LPPS (Low Pressure Plasma Spraying), 
EB-PVD (Electron Beam - Physical Vapour Deposition). 
In plasma spraying powder is first injected into the burner 

and then deposited. Plasma-generating gas is run through the 
burner - most often it is argon (sometimes supplemented with 
hydrogen, nitrogen or helium). Placed in the central part of the 
burner, a tungsten cathode is encircled with a copper anode. 
Stress difference between the anode and the cathode in the 
presence of argon results in electric arc discharge inside of the 
burner. Rapid heating of argon caused by flow of electric 
current through the arc results in its turning to plasma density 
and escaping through the burner’s nozzle, combined with 
heated powder. The burner is water-cooled due to a high 
temperature of gases produced during the process. Most 
usually, the burner is supplied with direct current (DC) [10].  
If the APS procedure is carried out appropriately, the base will 
not heat up. Deposition of high-melting point materials such 
as tungsten and zirconium is possible thanks to the fact that 
the temperature of the plasma burner may reach a temperature 
of 14000K. This method allows for use of powders and rods 
(though used rarely in this method). There is a possibility  
of spraying low-melting point substances if the burner is 
replaced with other material-feeding component. 

The LPPS method (Low Pressure Plasma Spraying) used 
for formation of thermal barrier coatings is carried out  
by means of plasma spraying at low pressure. 

Basic features of the LPPS procedure are: 
no reduction of metal and gas, 
a quick procedure of coating deposition, 

very low porosity of coating, 
self-cleaning during the procedure, 
very good coating’s adhesion to the base. 
Coatings obtained by the LPPS method enjoy very good 

quality due to their high density as well as fine-grained and 
homogenous character. High quality of coatings can be 
obtained through appropriate surface preparation and coating 
temperature. Plasma flow is deposited at low pressure approx. 
50 mbar (in Ar, He or Ar+He atmosphere).  

Comparison of the LPPS and EB-PVD methods shows that 
the methods are complementary. The LPPS method is used for 
large components, while a big amount of small components 
can be coated by the EB-PVD method. However, there is  
a significant cost difference between the two methods. 
Although the EB-PVD method is more expensive than the 
LPPS method, it offers higher quality of the coating’s surface. 
Porosity of the surface is not closed. 

Extensive research into developing new ceramic coatings 
of better properties than those of commonly used yttrium-
stabilized zirconium oxide is now being carried out. Currently, 
most valued are ceramic powders based on pyrochlors, rare 
earth metal oxides, hexaluminates and pervostikites [11].  

Research into application of novelty zirconium-stabilised 
oxides is also carried out. These oxides include magnesium 
oxides [12]. Currently producers of powders for plasma 
spraying offer magnesium- and calcium-stabilised zirconium 
oxide ceramic powders [13]. The paper presents results  
of plasma spraying of these powders. 

 
 

2. Experimental 
 
As the base material a Rene 80 foundry alloy was used; 

Table 1 shows its chemical composition. Plasma spraying 
procedure was carried out with the use of an F4 MB Sulzer 
Metco burner. For an interlayer AMDRY 997 powder was 
used; Table 1 presents its chemical composition. For forming 
of a ceramic layer three types of powder were used: common 
yttrium oxide-stabilized zirconium oxide and new types  
of powder - calcium- and magnesium-stabilized zirconium 
oxides. Chemical composition of the powders has been 
presented in Table 2. 

Description of powders has been included in the paper 
[13]. Metallographic examination was carried out in 
accordance with methodology suggested by Moskal in the 
paper [14]. Metallographic and porosity tests were done along 
the procedure as described in the paper [15]. For selected 
coatings, microstructural research was carried out with the use 
of an S-3400 type scanning electron microscope by Hitachi, 
equipped with an X-ray add-on device for microanalysis  
of chemical composition by Thermo.  
 
Table 1. 
The nominal composition of base material and bondcoat powder 

Alloy Ni Co Cr W Mo Al Ti Zr C Ta Y 

Rene 80 Bal. 9.5 14 4 4 3 5 0,06 0,17   

AMDRY 997 Bal. 23 20 - - 8.5 - - - 4 0.6
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Table 3. 
Results of the EDS analysis of chemical composition in spots as indicated in Fig. 4 

 
a) 

 
 

b) 

 
 

Fig. 4. Microstructure of thermal barier coating with calcium-
stabilised zirconium oxide ceramic layer (METCO 201) (a) and 
detailed construction of the MeCrAlY-type interlayer (b) with 
indicated spots for chemical composition analysis 
 
 

4. Summary 
 
Initial trials of thermal barrier coatings deposition with use of 

novelty calcium - and magnesium-stabilised zirconium oxide 
powders have proven that the powders can be easily deposited by 
the APS method. Both layers were significantly less porous - two 

and three times respectively - under the same deposition 
conditions. Fundamental limitation of application of these 
materials lies in low work temperature which should not exceed 
800-900°C - much lower then in conventional YSZ.  

Further research into resistance to oxidation of these coatings 
seems necessary for experimental determination of their actual 
work temperature. They can be successfully applied in automotive 
industry for coating of petrol or diesel engine’s components. 
Further investigation into formation of thermal barrier coatings 
will continue to use yttrium-stabilized zirconium oxide since it is 
rather irreplaceable. However, investigation into possible 
applications of two-layer and composite coatings, which may 
improve the work temperature of thermal barrier coatings,  
is feasible. 
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Table 3. 
Results of the EDS analysis of chemical composition in spots as indicated in Fig. 4 

 
a) 

 
 

b) 

 
 

Fig. 4. Microstructure of thermal barier coating with calcium-
stabilised zirconium oxide ceramic layer (METCO 201) (a) and 
detailed construction of the MeCrAlY-type interlayer (b) with 
indicated spots for chemical composition analysis 
 
 

4. Summary 
 
Initial trials of thermal barrier coatings deposition with use of 

novelty calcium - and magnesium-stabilised zirconium oxide 
powders have proven that the powders can be easily deposited by 
the APS method. Both layers were significantly less porous - two 

and three times respectively - under the same deposition 
conditions. Fundamental limitation of application of these 
materials lies in low work temperature which should not exceed 
800-900°C - much lower then in conventional YSZ.  

Further research into resistance to oxidation of these coatings 
seems necessary for experimental determination of their actual 
work temperature. They can be successfully applied in automotive 
industry for coating of petrol or diesel engine’s components. 
Further investigation into formation of thermal barrier coatings 
will continue to use yttrium-stabilized zirconium oxide since it is 
rather irreplaceable. However, investigation into possible 
applications of two-layer and composite coatings, which may 
improve the work temperature of thermal barrier coatings,  
is feasible. 
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