
© Copyright by International OCSCO World Press. All rights reserved. 2012 Research paper 355

VOLUME 55

ISSUE 2

December

2012
of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

Evaluation of piezoelectric smart 
materials subjected to impact test 
over range of temperatures

I. Patel a,b,*, E. Siores b  
a British University in Egypt, Cairo, Suez Desert Road,  
El Sherouk City, Postal No. 11837, P.O. Box 43, Egypt 
b Institute for Materials Research and Innovation, The University of Bolton,  
Deane Road, Bolton, BL3 5AB, England, United Kingdom
* Corresponding e-mail address: iadam@hotmail.com 

Received 18.10.2012; published in revised form 01.12.2012

Properties

AbstrAct

As the demand for technological advances increase on daily basis, so does the dependency on existing fossil 
fuels, which is depleting at an alarming rate.  The work presented in this paper addresses key solutions to 
energy management, and particularly energy harvesting for powering electronic devices and sectors in general, 
particularly applications where components are exposed to severe subzero temperatures. This research compares 
the energy output in terms of voltage for 3 piezoelectric smart materials, ceramic based PZT (Lead, Zirconate 
Titanate), polymer membrane PVDF (Polyvinylidine Fluoride) and foam based PP (Polypropylene). Impact 
analysis using concentrated mass of 1.02kg from a fixed height of 17mm was allowed to drop roughly in the 
centre of piezoelectric material samples as the temperature was increased from approximately -33°C to room 
temperature.  Voltage output was recorded at various temperature increments using pico-scope software, which 
indicated that generally, voltage increased for all 3 materials as temperature decreased.   
Keywords: Piezoelectric; Subzero; Temperature; Energy harvesting
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1. Introduction

Piezoelectric effect is the ability of certain material to 
generate voltage when pressure is applied and vice versa. 
However, piezoelectric phenomenon should not be confused with 
pyroelectricity, which is the ability of certain materials to generate 
voltage when heated or cooled. The change in temperature alters 
the positions of the atoms within the crystal structure, and as such 
the polarization of the material changes. This polarization change 
gives rise to a voltage across the crystal. 

Strides have been made to incorporate computers and digital 
systems into our everyday lives and extensive work has been 
carried out to investigate the possibility, practicality and 
efficiency of imbedding them into our clothing, or in biological 
systems, such as the human body [1]. The use of power harvesting 
devices to capture the energy lost during everyday human 
functions seems exciting, and as a result, it has been one of the 
many topics facilitating the rapid growth of the energy harvesting 
sector. Possibly the first investigation of power scavenging 
systems incorporated into a biological system was performed in 
1984 by Hausler et al. [2]. Their work proposed the use of an 
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implantable physiological piezoelectric PVDF film power supply. 
Based on the concept that the energy expended for respiration 
could be converted into electric power, Hausler et al used the 
motion of the ribs during inhalation and exhalation to deform a 
converter. A miniaturized prototype was designed and 
experiments were conducted on a dog, where a converter was 
fixed to its ribs and spontaneous breathing led to a peak voltage of 
18 V, which corresponded to a power of about 17 µW. However, 
the energy generated was insufficient to power the required micro 
electronic device. It was assumed that optimization of the PVDF 
film properties, as well as more suitable converter attachment at 
the ribs would make it possible to produce power in the region of 
1 mW, yielding a mechanical power load of 20 mW.   

Throughout our daily activity, a significant amount of energy 
is wasted in various forms, some of which could make for 
attractive energy harvesting applications. A paper published by 
Starner in 1996 [3], carried out an investigation into the amount of 
power delivered from range of human activities. The paper 
contained a survey of several power generation methods ranging 
from body heat and breath to finger and upper limb motion. An 
analysis of the power available from each of the different 
locations was presented. He calculated that approximately 67 W 
of power is lost during walking and that a piezoelectric smart 
material device mounted inside a shoe with a conversion 
efficiency of 12.5% could achieve 8.4 W of power. One idea he 
explained was to place piezoelectric film patches in the joints of 
clothing to harvest the energy lost during movement which he 
estimated to be about 0.33 W.  

The work of Starner [3] brought the possibility of power 
harvesting locations around the human body to the attention of 
many researchers and the work in wearable power supplies began 
to grow. As a result Swallow and Patel investigated the feasibility 
of in cooperating piezoelectric material for energy reclamation in 
hand glove structure [4] with accepted patent for ‘Detection and 
Suppression of Muscle Tremors’ Patent GB0623905.7. Recent 
work of Patel and Siores compared the voltage output for ceramic 
based PZT, polymer membrane PVDF and polymer foam PP 
when subjected to vibratio frequency of between 0-120 Hz and 
impact test under room and elevated temperatures ranging from 
room to approximately 150°C [5]. Post and Orth [6] investigated 
the concept of “smart fabric” for wearable clothing. Their 
research described techniques used in building circuits from 
commercially obtainable fabrics, fasteners etc. Multiple different 
conductive fabrics were explored, including silk organza, 
constructed of silk thread wrapped in thin copper foil that is 
highly conductive and can be sewn using industrial machines. 
Several devices have been constructed of fabric including a type 
of fabric keyboard that could be crumpled up, thrown in the wash 
and even used as a potholder without losing its ability to function. 
These materials would be very effective for transmitting the 
energy generated around the body to the storage medium in a 
seamless way. The use of piezoelectric actuators located inside 
the sole of a shoe for power harvesting was studied by Kymissis 
et al [7]. The piezoelectric based power harvesting devices were a 
multiple layered PVDF patch and a piezoelectric ceramic Thunder 
actuator. The PVDF patch was placed in the sole of the shoe to 
harvest the bending energy and the Thunder actuator was located 
in the heel to harvest the impact energy. It was found that the 
PVDF patch and Thunder actuator produced an average power of 

approximately 1.1 mW and 1.8 mW of power respectively.  
The circuit used a capacitor to store the charge until a sufficient 
amount was captured. Then the circuitry allowed the power to be 
released to a transmitter that would send a 12-bit code. The 
system could transmit the code about 6-7 times every 3-6 steps.  

Similar to the work of Kymissis et al. [5], Shenck’s Master’s 
thesis [8], demonstrated electrical energy generation from 
piezoelectric patches in a shoe. A rigid bimorph piezoelectric 
ceramic transducer was developed and integrated into a mass 
produced shoe insert. A design study was conducted by Ramsey 
and Clark [9], published in 2001, which investigated the 
feasibility of using a piezoelectric transducer as a power supply 
for a MEMS application.   

Rather than developing a method of accumulating the energy 
developed by piezoelectric materials, Ottman et al [10] researched 
to develop a circuit that would maximize the power flow from the 
piezoelectric device. Hofmann et al. [11] extended the work of 
Ottman et al. [9] by implementing a similar circuit to maximize 
the power flow. Following the work of Sodano et al. [8], a second 
paper was published [12] to further investigate the ability of 
piezoelectric materials to recharge batteries. This study compared 
the macro-fiber composite (MFC) actuator with the monolithic 
piezoceramic material PZT for recharging batteries. The MFC is 
an actuator that uses piezoelectric fibers and interdigitated 
electrodes to capitalize on the higher g33 piezoelectric coupling 
coefficient, allowing it to reduce higher strain and force than 
typical monolithic PZT [13].  
 
 

2. Materials investigated 
 

There are three most common types of piezoelectric materials 
- ceramic based PZT, polymer based PVDF and polymer based 
foam PP. The polymer materials are soft and flexible; however, 
they possess lower dielectric and piezoelectric properties than 
ceramics. Conventional piezoelectric ceramic materials are rigid, 
heavy and can only be produced in block form. 

The ceramic PZT which consisted of two ceramic materials, 
with active piezoelectric fibres of 250 µm and 120 µm diameters 
were embedded in a polymer matrix and encapsulated in copper-
clad laminate, see Figure 1c. A ceramic Bimorph material 
consisting of two 250 µm fibre diameter materials adhered to 
either side of a rigid metal centre shim material and 4 layers of 
250 µm material adhered together using standard epoxy resin. All 
the PZT specimens were obtained from Advanced Cerametrics 
Incorporated (ACI). 

A laminated piezoelectric polymer material, PVDF, where 
two 125 µm polyester laminates were attached to the either side of 
a 28 µm thick piezoelectric film element and two un-laminated 
PVDF materials of 28 and 52 µm thickness was used, see Figure 
1a. The PVDF specimens were supplied by Measurement 
Specialities Incorporated (MSI). Finally, a fully shielded, low 
mass, thin ribbon PP sample was used. The sample consisted of a 
sensing element constructed of elastic electret, 3 layers of 
polyester film. Aluminium electrodes with crimped connectors 
were used for connecting to electrodes and double-sided sticky 
tape for convenience, see Figure 1b as supplied by Emfit. The 
dimensions and classification of the piezoelectric polymer and 
ceramic materials are given in Table 1.   
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implantable physiological piezoelectric PVDF film power supply. 
Based on the concept that the energy expended for respiration 
could be converted into electric power, Hausler et al used the 
motion of the ribs during inhalation and exhalation to deform a 
converter. A miniaturized prototype was designed and 
experiments were conducted on a dog, where a converter was 
fixed to its ribs and spontaneous breathing led to a peak voltage of 
18 V, which corresponded to a power of about 17 µW. However, 
the energy generated was insufficient to power the required micro 
electronic device. It was assumed that optimization of the PVDF 
film properties, as well as more suitable converter attachment at 
the ribs would make it possible to produce power in the region of 
1 mW, yielding a mechanical power load of 20 mW.   

Throughout our daily activity, a significant amount of energy 
is wasted in various forms, some of which could make for 
attractive energy harvesting applications. A paper published by 
Starner in 1996 [3], carried out an investigation into the amount of 
power delivered from range of human activities. The paper 
contained a survey of several power generation methods ranging 
from body heat and breath to finger and upper limb motion. An 
analysis of the power available from each of the different 
locations was presented. He calculated that approximately 67 W 
of power is lost during walking and that a piezoelectric smart 
material device mounted inside a shoe with a conversion 
efficiency of 12.5% could achieve 8.4 W of power. One idea he 
explained was to place piezoelectric film patches in the joints of 
clothing to harvest the energy lost during movement which he 
estimated to be about 0.33 W.  

The work of Starner [3] brought the possibility of power 
harvesting locations around the human body to the attention of 
many researchers and the work in wearable power supplies began 
to grow. As a result Swallow and Patel investigated the feasibility 
of in cooperating piezoelectric material for energy reclamation in 
hand glove structure [4] with accepted patent for ‘Detection and 
Suppression of Muscle Tremors’ Patent GB0623905.7. Recent 
work of Patel and Siores compared the voltage output for ceramic 
based PZT, polymer membrane PVDF and polymer foam PP 
when subjected to vibratio frequency of between 0-120 Hz and 
impact test under room and elevated temperatures ranging from 
room to approximately 150°C [5]. Post and Orth [6] investigated 
the concept of “smart fabric” for wearable clothing. Their 
research described techniques used in building circuits from 
commercially obtainable fabrics, fasteners etc. Multiple different 
conductive fabrics were explored, including silk organza, 
constructed of silk thread wrapped in thin copper foil that is 
highly conductive and can be sewn using industrial machines. 
Several devices have been constructed of fabric including a type 
of fabric keyboard that could be crumpled up, thrown in the wash 
and even used as a potholder without losing its ability to function. 
These materials would be very effective for transmitting the 
energy generated around the body to the storage medium in a 
seamless way. The use of piezoelectric actuators located inside 
the sole of a shoe for power harvesting was studied by Kymissis 
et al [7]. The piezoelectric based power harvesting devices were a 
multiple layered PVDF patch and a piezoelectric ceramic Thunder 
actuator. The PVDF patch was placed in the sole of the shoe to 
harvest the bending energy and the Thunder actuator was located 
in the heel to harvest the impact energy. It was found that the 
PVDF patch and Thunder actuator produced an average power of 

approximately 1.1 mW and 1.8 mW of power respectively.  
The circuit used a capacitor to store the charge until a sufficient 
amount was captured. Then the circuitry allowed the power to be 
released to a transmitter that would send a 12-bit code. The 
system could transmit the code about 6-7 times every 3-6 steps.  

Similar to the work of Kymissis et al. [5], Shenck’s Master’s 
thesis [8], demonstrated electrical energy generation from 
piezoelectric patches in a shoe. A rigid bimorph piezoelectric 
ceramic transducer was developed and integrated into a mass 
produced shoe insert. A design study was conducted by Ramsey 
and Clark [9], published in 2001, which investigated the 
feasibility of using a piezoelectric transducer as a power supply 
for a MEMS application.   

Rather than developing a method of accumulating the energy 
developed by piezoelectric materials, Ottman et al [10] researched 
to develop a circuit that would maximize the power flow from the 
piezoelectric device. Hofmann et al. [11] extended the work of 
Ottman et al. [9] by implementing a similar circuit to maximize 
the power flow. Following the work of Sodano et al. [8], a second 
paper was published [12] to further investigate the ability of 
piezoelectric materials to recharge batteries. This study compared 
the macro-fiber composite (MFC) actuator with the monolithic 
piezoceramic material PZT for recharging batteries. The MFC is 
an actuator that uses piezoelectric fibers and interdigitated 
electrodes to capitalize on the higher g33 piezoelectric coupling 
coefficient, allowing it to reduce higher strain and force than 
typical monolithic PZT [13].  
 
 

2. Materials investigated 
 

There are three most common types of piezoelectric materials 
- ceramic based PZT, polymer based PVDF and polymer based 
foam PP. The polymer materials are soft and flexible; however, 
they possess lower dielectric and piezoelectric properties than 
ceramics. Conventional piezoelectric ceramic materials are rigid, 
heavy and can only be produced in block form. 

The ceramic PZT which consisted of two ceramic materials, 
with active piezoelectric fibres of 250 µm and 120 µm diameters 
were embedded in a polymer matrix and encapsulated in copper-
clad laminate, see Figure 1c. A ceramic Bimorph material 
consisting of two 250 µm fibre diameter materials adhered to 
either side of a rigid metal centre shim material and 4 layers of 
250 µm material adhered together using standard epoxy resin. All 
the PZT specimens were obtained from Advanced Cerametrics 
Incorporated (ACI). 

A laminated piezoelectric polymer material, PVDF, where 
two 125 µm polyester laminates were attached to the either side of 
a 28 µm thick piezoelectric film element and two un-laminated 
PVDF materials of 28 and 52 µm thickness was used, see Figure 
1a. The PVDF specimens were supplied by Measurement 
Specialities Incorporated (MSI). Finally, a fully shielded, low 
mass, thin ribbon PP sample was used. The sample consisted of a 
sensing element constructed of elastic electret, 3 layers of 
polyester film. Aluminium electrodes with crimped connectors 
were used for connecting to electrodes and double-sided sticky 
tape for convenience, see Figure 1b as supplied by Emfit. The 
dimensions and classification of the piezoelectric polymer and 
ceramic materials are given in Table 1.   
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