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Analysis and modelling

Abstract

Purpose: of this paper is to demonstrate the process of constitutive modelling of elastoplastic properties of 
materials using generalized Prandtl rheological model. A special attention is put on description of composites.
Design/methodology/approach: Based on the proposed rheological model, the set of constitutive relationships 
is formulated. Identification of parameters of rheological model is carried out based on experimental hysteretic 
loops. The constitutive equations are used in the paper for computer simulation of experimental tests.
Findings: It is proved in the paper that the obtained constitutive relationships can describe the phenomenon of 
plastic anisotropy. An illustrating example is demonstrated for fiber glass-reinforced polymer-matrix composite. 
The comparison between experimental results and computer simulations shows the validity of the model.
Research limitations/implications: The computer simulations concentrate on one-dimensional problem.  
It is suggested for future investigations to implement three-dimensional constitutive model. Such an 
implementation may be conducted within FEM codes ABAQUS or ANSYS.
Practical implications: Using the method of constitutive modelling of elastoplastic properties of materials  
it is possible to carry out computer simulations solving non-linear differential equations for any type of loadings 
both static and dynamic.
Originality/value: The original value of the paper is the proposed procedure of identification of material 
model exhibiting plastic anisotropy based on generalized Prandtl rheological scheme. As the result, the system  
of constitutive relationships has explicit differential form, easy for numerical implementations.
Keywords: Generalized Prandtl model; Constitutive relationships; Elastoplasticity; Plastic anisotropy; 
Rheological schemes; Hysteresis; Composites
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1. Introduction 
 
Composite materials are commonly used for construction, 

engineering and other applications [1-3]. They are formed using 
no less than two materials being still distinguishable and not fully 
blended. Composite should have better properties in comparison 
with the properties of its components. Composites take advantage 
of the strengths and abilities of the components. 

Analyzing the stress and strain states of composite materials 
needs appropriate constitutive models to be taken into 
consideration. Such models should describe elastoplastic 
properties of materials [4]. 

The purpose of this paper is to demonstrate the procedure of 
constitutive modelling for materials, including composites, 
exhibiting elastoplastic properties. The procedure is based on  
the analysis of generalized Prandtl rheological model.  
The obtained set of constitutive equations is defined by 
parameters of the rheological scheme. Identification of these 
parameters is carried out based on experimental hysteretic loops. 
Moreover, the model can describe the phenomenon of plastic 
anisotropy caused by different strengths of materials in tension 
and compression. 

The constitutive relationships proposed in the paper have  
a form of non-linear explicit differential equations. The 
implementation of these equations is demonstrated via an example 
in which the experimental hysteretic loop for fiber glass-
reinforced polymer-matrix composite is compared with results of 
computer simulations.  

The procedure of constitutive modelling of materials using 
rheological schemes was previously applied by authors for 
metallic alloys, shape memory alloys (SMA) and asphalt-
aggregate mixes [5-8].  

 
 

2. Stress and strain state description 
 
The stress and the strain state of a body is described by the 

symmetrical 2nd order tensors. Let S  and E  be the Euclidean 
linear spaces, for stress and strain respectively. The elements 
belonging to the above spaces are represented as 33  matrixes. 
The inner product of two 2nd order tensors is denoted 

1(2)(1) R  where S(2)(1) , , and can be defined as 
follows 
 

3,2,1,;(2)(1)(2)(1) jiijij  (1) 
 
The summation convention is assumed over the repeated 

indices. The norm of a tensor is denoted 1R  and is defined 

by 
 

ijij:  (2) 

 
The space of the stress and strain tensors may be decomposed 

into two orthogonal sub-spaces. The first sub-space constitutes the 
sub-space of spherical tensors. The second one is the sub-space of 

deviatoric tensors. Let us assume the following symbols to be 
used for the stress and strain state description 

 
sp ; ea  where Ip tr 

3
1  and Ia tr 

3
1  (3) 

 

Here p and a denote spherical tensors, s and e are deviators 
and I denotes identity 2nd order tensor. In the above equations the 
operation 1tr Rii

 denoting the trace of a tensor was used 
additionally. 

 
 

3. Elastoplastic properties of materials 
 
Mathematical description of elastic properties of isotropic 

bodies can be formulated separately for the spherical and 
deviatoric sub-spaces. The Hooke’s law may be written in the 
form of two linear equations 
 

ap K3 ; es G2  (4) 
 
where K and G denote bulk modulus and shear modulus 
respectively. 

 
Analyzing the constitutive properties of elastoplastic material, 

the hypothesis stating that the deviatoric part of the strain tensor is 
decomposed into two components may be assumed 
 

plel eee
 (5) 

 
where the deviators eel and epl are related to the elastic and the 
plastic part of the strain state. 

 
The stress state in elastic perfectly plastic material is 

described by two relations 
 

ap K3 ; o2 ees G  (6) 
 
The constitutive properties of the plastic pressure-independent 

material may be described in the form of the following inclusion 
and variational inequality [9,10] 
 

ssse
s

~0~
o  (7) 

 
where the set  determines admissible stresses in deviatoric sub-
space and the superposed dot denotes differentiation with respect 
to the time coordinate. The relationship (6)2 is well-known as 
Drucker’s stability postulate or Hill’s principle of maximum 
plastic work.  

 
Taking into account the Huber-Mises-Hencky’s (HMH) yield 

criterion the set  is described as 
 

k2:: ss S
 (8) 
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Here k denotes the value of yield limit obtained via pure shear 
test. The relationship between k and the tension/compression yield 
limit o in case of HMH criterion is as follows k3o

. 
As a consequence of introduction Eqn. (8), the relations (7) 

may be rewritten in the following form 
 

02;0;2 2222

pl

kk ss

se

 (9) 
 
where the Eqn. (9)1 is well-known associated flow rule while the 
relations (9)2 are loading/unloading or Kuhn-Tucker conditions. 
The scalar  denotes so called Lagrange multiplier. The procedure 
of evaluation of Lagrange multiplier for elastic-perfectly plastic 
material leads to the following equation describing plastic 
deviatoric strain rate [11] 
 

k
k

k

2if
2

2if

2
pl sess

s0
e

 (10) 
 
where the function denotes projection onto the set of non-
negative numbers being defined as follows 
 

otherwise0
0  if

:
zz

z
 (11) 

 
The set of constitutive Equations (5), (6) and (10) defines 

simple Prandtl elastoplastic model. In case of deviatoric stresses 
the Prandtl model can be represented by rheological scheme 
shown in Fig. 1. The spring element represents elastic properties 
while the slider represents rigid perfectly plastic model.  

 

 
 

Fig. 1. Rheological scheme of simple Prandtl model in deviatoric 
subspace 

 
Let us move back to the Eqn. (8) defining the set of 

admissible stresses corresponding to the HMH criterion. Because 
of the fact that lots of materials exhibit different limit stresses in 
tension and compression, the non-symmetric HMH criterion may 
be used [12]. Let us assume the following relation between 
tension yield limit o  and compression yield limit 

o
 

oo  where 1,0  (12) 

 
Taking into account Eqn. (12) the set  can be described as 

follows 
 

k2:: osss S
 (13a) 

 
where the tensor so determines translation of the yield surface in 
stress space. A possible form of such a tensor is   
 

3/100
03/10
003/2

2
1

oos

 (13b) 
 
Let us note that analyzing Eqn. 13b, for  = 1, then 

ooo
 and the set  described by Eqn. (13a) transforms 

to the symmetrical HMH condition given in Eqn. (8). 
 
 

4. Hysteretic loop  
 

Elastic-dissipative properties of deformable bodies can be 
characterized by an operator F , mapping the strain time history 
function (t) into the stress function (t) 
 

tt F  (14) 
 
In case of a body possessing linear properties, the operator F  

has a form of integral Boltzman operator. In this paper the form of 
the operator F  will be determined based on mathematical 
description of rheological schemes modelling constitutive 
properties of materials. In order to characterize the stress and the 
strain states, scalar quantities are used very often. In such a case, 
based on Eqn. (14) we can create the graph of a parametric 
function illustrating the relationship between analyzed scalar 
quantities. The curve obtained in such a way is called hysteretic 
loop [13]. 

Hysteretic loops for deformable bodies are used to be created 
for a cyclic, one-dimensional loading of a material. Thus, the 
hysteretic loop can be visualized in the following planes: sample 
elongation u versus axial load f or axial strain  versus axial stress 
. It is worth mentioning that hysteretic loop for materials 

possessing linear properties has the shape of ellipse. 
For further investigations we will analyze hysteretic loops 

determined for one-dimensional tests and visualized on the plane 
( , ) or (u,f). Such hysteretic loops are used very often in the 
process of identification of rheological models. 

As an example let us analyze one-dimensional simple Prandtl 
model. The three-dimensional relationships as well as the 
rheological scheme were presented in previous chapter. Figure 2 
visualizes one-dimensional simple Prandtl model and its 
hysteretic loop.  

4.	�Hysteretic loop

 

 
 

Fig. 2. Rheological scheme (a) and hysteretic loop (b) of one-
dimensional simple Prandtl model 

 
The spring element shown in Fig. 2a is characterized by 

Young modulus E  obtained via tension/ compression test. One-
dimensional plastic property of the model, represented by the 
slider, is shown in Fig. 3. Two cases were considered. Figure 3a 
shows symmetrical tension/compression model while in Fig. 3b 
the non-symmetrical model is shown.   

 

 
 

Fig. 3. One-dimensional plastic characteristics for symmetrical (a) 
and non-symmetrical (b) tension/compression models 

 
Another example of simple hysteretic loop concerns one-

dimensional elastoplastic model with hardening (simple Prandtl 
model with hardening). The scheme is shown in Fig. 4a while the 
hysteretic loop in Fig. 4b. As we can see, in order to model linear 
hardening phenomenon, simple modification of rheological 
scheme was done (compare Figs. 2a and 4a).  

 

 
 

Fig. 4. Rheological scheme (a) and hysteretic loop (b) of one-
dimensional simple Prandtl model with hardening 

5. Generalized Prandtl model 
 
A rheological scheme of generalized Prandtl model with 

hardening is shown in Fig. 5. This structure contains N  Prandtl 
networks and one spring in parallel. The hysteretic loop of 
generalized Prandtl model is shown in Fig. 6. The loop can be 
approximated by two curves  and . The curve  (section OA in 
Fig. 6) determines the values of stresses during a monotonic increase 
in strain along the section ) ,0( o

. The curve  defines stresses 
during monotonic change in strain along the section ) ,( oo - (section 
AB in Fig. 6) and along the section ) ,( oo-  (section BA in Fig. 6). 

The form of the function  is similar to the function  and 
can be described as follows   
 

2
2:

 (15) 

 
 

Fig. 5. Rheological scheme of generalized Prandtl model with 
hardening 

 
Equation (13) can be applied for symmetrical Prandtl model, 

when in each network limit stresses in tension and compression 
have the same value 

iii ooo
. In case of non-symmetrical 

model exhibiting various plastic limits in tension and 
compression, the following formula can be applied 
 

1,0,
1

1:
 (16) 

  
 

Fig. 6. Hysteretic loop of generalized Prandtl model with 
hardening 
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1,0,
1
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Fig. 6. Hysteretic loop of generalized Prandtl model with 
hardening 

5.	�Generalized Prandtl model

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper508

Journal of Achievements in Materials and Manufacturing Engineering

W. Grzesikiewicz, A. Zbiciak

Volume 55 Issue 2 December 2012

The influence of the value of parameter  on the location of 
hysteretic loop is shown in Fig. 7. 

 

 
 

Fig. 7. Hysteretic loops of generalized Prandtl model with 
hardening for various parameters  

 
Finally we will formulate the system of constitutive equations 

for generalized Prandtl model with hardening. In order to do so, 
we need to use the Hooke’s law for elastic parts, the plastic 
characteristic shown in Fig. 3b and the strain/stress decomposition 
rule. The procedure needs also the use of so called differential 
succession to be applied [11]. The algorithm leading to the system 
of explicit differential equations was explained in [7]. The 
complete set of relationships is as follows 
 

N

i
iE

1
o

 (17a) 
 

i
i E pli   (17b) 

 

0 and if
0 and if

0 and if0
0 and if0

if0

o

o

o

o

oo

pl

ii

ii

ii

ii

iii

i

 (17c) 
 
 

6. Identification of composite model 
 
The procedure of identification of material model will be 

demonstrated using experimental results of cycling tension of 
fiber glass-reinforced polymer-matrix composite (see Fig. 8). 

Figure 9 shows the results of experiment with a marked line 
corresponding to the functions  and . The marked line  was 
approximated using the following polynomial 
 

5

1

:
i

i
i xax

 (18) 

The parameters 
ia  of the function defined by Eqn. (18) were 

obtained using least-squares algorithm implemented in MATLAB 
software (see Fig. 10). The values obtained are 4E6945.01a , 

4E3895.12a , 4E8628.13a , 4E3911.14a , 4E4156.05a . 
 

 
 

Fig. 8. Result of cyclic loading of the composite 
 

 
 

Fig. 9. Result of cyclic loading of the composite with marked 
curves  and  
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Fig. 10. Result of approximation of the function   

6.	�Identification of composite 
model

 

The same optimization procedure was applied in order to find 
the value of the parameter 2617.0  in Eqn. (16). The 
graphical visualization of the results is shown in Fig. 11.  
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.45
0

400

800

1200

1600

2000

Displacement [mm]

Lo
ad

 [N
]

 

 

Curve fitting
Experiment

 
 

Fig. 11. Result of approximation of the function  
 
In order to simulate the cyclic experiment shown in Fig. 8, the 

rheological scheme of generalized Prandtl model with finite 
number of branches will be used. The characteristics of the model 
are determined by the function  presented in Fig. 10. 

 

 
 

Fig. 12. Identification of rheological 1-D model   
 
The idea of identification is presented in Fig. 12. Based on the 

values 
iu  and 

if  (see Fig. 12a) we can evaluate the parameters of 
rheological scheme shown in Fig. 12b. It should be emphasized that 
the hysteretic loop we will simulate (see Fig. 8) is defined on the 
plane displacement – force fu . Thus, the parameters shown in 
Fig. 12b are spring stiffnesses

iS  and slider limit forces 
iTo
. 

The identification procedure leads to the following equations 
relating the points ii fu ,  taken from approximation of 
experiment and the parameters of rheological scheme 

iS  and 
iTo
.  

 

iii

N

ij
j

ii

ii
i

NN

NN
N

uST

NNiSS
uu
ffS

S
uu
ffS

S

o

1
o

1

1

o
1

1

o

1,2,1for     

tan 

 (19) 

We will simulate the experiment shown in Fig. 8, solving the 
following system of differential equations (compare with Eqns. 15) 
 

N

i
ifuSf

1
o

 (20a) 
 

i
i uuSf pli   (20b) 

 

0 and if
0 and if

0 and if0
0 and if0

if0

o

o

o

o

oo

pl

uTfu
uTfu

uTf
uTf
TfT

u

ii

ii

ii

ii

iii

i

 (20c) 
 
The number of rheological scheme’s networks assumed was 

N = 10. The fixed-step Runge-Kutta algorithm was used to solve 
differential equations. The results of simulations are presented in 
Fig. 13. Comparing the Figs. 8 and 13 shows good agreement 
between experiment and simulation. 
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Fig. 13. Results of numerical simulations for 10-network 
generalized Prandtl model 
 
 

7. Conclusions 
 

The original value of the paper is the proposed procedure of 
identification of material model exhibiting plastic anisotropy 
based on generalized Prandtl rheological scheme. As the result, 
the system of constitutive relationships has explicit differential 
form, easy for numerical implementations. 

It was proved in the paper that the obtained constitutive 
relationships can describe the phenomenon of plastic anisotropy. 
The illustrating example was demonstrated for fiber glass-
reinforced polymer-matrix composite. The comparison between 
experimental results and computer simulations shows the validity 
of the model. 

Using the method of constitutive modelling of elastoplastic 
properties of materials presented in the paper, it is possible to 
carry out computer simulations solving non-linear differential 
equations for both static and dynamic loadings. 
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The influence of the value of parameter  on the location of 
hysteretic loop is shown in Fig. 7. 

 

 
 

Fig. 7. Hysteretic loops of generalized Prandtl model with 
hardening for various parameters  

 
Finally we will formulate the system of constitutive equations 

for generalized Prandtl model with hardening. In order to do so, 
we need to use the Hooke’s law for elastic parts, the plastic 
characteristic shown in Fig. 3b and the strain/stress decomposition 
rule. The procedure needs also the use of so called differential 
succession to be applied [11]. The algorithm leading to the system 
of explicit differential equations was explained in [7]. The 
complete set of relationships is as follows 
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6. Identification of composite model 
 
The procedure of identification of material model will be 

demonstrated using experimental results of cycling tension of 
fiber glass-reinforced polymer-matrix composite (see Fig. 8). 

Figure 9 shows the results of experiment with a marked line 
corresponding to the functions  and . The marked line  was 
approximated using the following polynomial 
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The parameters 
ia  of the function defined by Eqn. (18) were 

obtained using least-squares algorithm implemented in MATLAB 
software (see Fig. 10). The values obtained are 4E6945.01a , 

4E3895.12a , 4E8628.13a , 4E3911.14a , 4E4156.05a . 
 

 
 

Fig. 8. Result of cyclic loading of the composite 
 

 
 

Fig. 9. Result of cyclic loading of the composite with marked 
curves  and  
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Fig. 10. Result of approximation of the function   

 

The same optimization procedure was applied in order to find 
the value of the parameter 2617.0  in Eqn. (16). The 
graphical visualization of the results is shown in Fig. 11.  
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Fig. 11. Result of approximation of the function  
 
In order to simulate the cyclic experiment shown in Fig. 8, the 

rheological scheme of generalized Prandtl model with finite 
number of branches will be used. The characteristics of the model 
are determined by the function  presented in Fig. 10. 

 

 
 

Fig. 12. Identification of rheological 1-D model   
 
The idea of identification is presented in Fig. 12. Based on the 

values 
iu  and 

if  (see Fig. 12a) we can evaluate the parameters of 
rheological scheme shown in Fig. 12b. It should be emphasized that 
the hysteretic loop we will simulate (see Fig. 8) is defined on the 
plane displacement – force fu . Thus, the parameters shown in 
Fig. 12b are spring stiffnesses

iS  and slider limit forces 
iTo
. 

The identification procedure leads to the following equations 
relating the points ii fu ,  taken from approximation of 
experiment and the parameters of rheological scheme 

iS  and 
iTo
.  
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We will simulate the experiment shown in Fig. 8, solving the 
following system of differential equations (compare with Eqns. 15) 
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The number of rheological scheme’s networks assumed was 

N = 10. The fixed-step Runge-Kutta algorithm was used to solve 
differential equations. The results of simulations are presented in 
Fig. 13. Comparing the Figs. 8 and 13 shows good agreement 
between experiment and simulation. 
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Fig. 13. Results of numerical simulations for 10-network 
generalized Prandtl model 
 
 

7. Conclusions 
 

The original value of the paper is the proposed procedure of 
identification of material model exhibiting plastic anisotropy 
based on generalized Prandtl rheological scheme. As the result, 
the system of constitutive relationships has explicit differential 
form, easy for numerical implementations. 

It was proved in the paper that the obtained constitutive 
relationships can describe the phenomenon of plastic anisotropy. 
The illustrating example was demonstrated for fiber glass-
reinforced polymer-matrix composite. The comparison between 
experimental results and computer simulations shows the validity 
of the model. 

Using the method of constitutive modelling of elastoplastic 
properties of materials presented in the paper, it is possible to 
carry out computer simulations solving non-linear differential 
equations for both static and dynamic loadings. 

7.	�Conclusions
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The computer simulations concentrate on one-dimensional 
problem. It is suggested for future investigations to implement 
three-dimensional constitutive model. Such an implementation may 
be conducted within FEM codes ABAQUS or ANSYS [14,15]. 
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