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Analysis and modelling

Abstract
Elastic metamaterials attract quite a bit of research attention of late. Theoretical models such as those proposed 
by Milton and Willis suggest possibility of physically realizing the structures leading to elastic metamaterials. 
The main stumbling block being the limitations of fabrication methods, considering the complex geometries and 
material requirements. Rapid prototyping and of-late rapid manufacturing offer solutions for the production of 
physical shapes of unlimited geometrical complexities direct from digital files, employing a variety of materials. 
Considering the requirements of metamaterial structures and the capabilities of rapid manufacturing, the need to 
bring these two together has been envisioned, and the experimental and numerical work presented in this paper 
is an initial step towards this goal.
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1. Introduction 

 
Invisibility cloaking has been the research focus in 

metamaterials field for the past few years. This research field 
started through the work of Smith et al, where they proposed a 
method to bend electromagnetic waves using gradient refractive 
index [1]. Based on this study, Leondhardt and Pendry showed 
that electromagnetic invisibility cloaking can be realized in micro 
wave range [2,3].  

Current research in metamaterials is also focused on exploring 
invisibility cloaking in various fields such as the elastic fields. 

Quite a few researches are looking at the possibility of guiding 
elastic waves such as those generated by seismic activities. In one 
of the studies, Milton, Briane, and Willis found that principle of 
transformation based cloaking can be applied to the continuum 
elasto-dynamic concept [4].  

However in order to do so, a new material with unusual 
properties need to be constructed (referred as elastic 
metamaterials). By comparing maxwell’s equation and continuum 
elastodynamics, they found that a relation between the two 
concepts can be made as long as the new material formed has its 
density as a function of the frequency [5]. 
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index [1]. Based on this study, Leondhardt and Pendry showed 
that electromagnetic invisibility cloaking can be realized in micro 
wave range [2,3].  

Current research in metamaterials is also focused on exploring 
invisibility cloaking in various fields such as the elastic fields. 

Quite a few researches are looking at the possibility of guiding 
elastic waves such as those generated by seismic activities. In one 
of the studies, Milton, Briane, and Willis found that principle of 
transformation based cloaking can be applied to the continuum 
elasto-dynamic concept [4].  

However in order to do so, a new material with unusual 
properties need to be constructed (referred as elastic 
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As can be seen from the series of mathematical expressions 
above, stress is coupled directly with velocity and the momentum 
density is directly related with the displacement gradient, 
satisfying the elastic metamaterials envisioned by Milton [7]. 
 
 

2.  Fabrication of Milton-Willis structure 
 

The material presented by Milton & Willis is a theoretical 
material, in which manufacturability of the material is not 
considered. An attempt is made in this paper to design and 
fabricate the Milton-Willis material as depicted in Fig. 4 below. 
 

 
 

Fig. 4. Designed Milton-Willis material configuration 
 

All parts of the material shown above are rigid, and the 
material consists of 4 different parts which are named as shown in 
Fig. 4. The rigid parts are made of nylon; solid masses used are 
lead and steel balls. Instead of using springs, silicone gel is used 
to support the rigid structure and the solid masses. As mentioned 
briefly above, rigid parts of the material need to be considerably 
stiffer than the elastic parts. This is verified by performing tensile 
tests on both materials (nylon and silicone). Following table lists 
the material used and relevant properties. 

Eight ball joints are used in this material structure. However 
rotation about X and Y axis is limited, meanwhile rotation about 
Z axis is allowed. Slots at the joint enclosure allow the Z axis 
rotation, while small height clearance between bar and the joint 
enclosure limits the X and Y axis rotation. This range of motion 
follows the requirement of the model as described in the literature 
where model motion is mainly in the XY plane. 

Table 1.  
Material properties 

Material Properties Value 

Steel 

Elastic Modulus 2 x 109 Pa 

Poisson's ratio 0.3 

Density 7850 kg/m3 

Silicone 
Elastic Modulus 1.66 x 105 Pa 

Density 2330 kg/m3 
 

The rigid structure is made by using the selective laser 
sintering (SLS) method. The choice of SLS over other plastic 
manufacturing methods is due to the ease of manufacturing the 
complex shape direct from CAD files, without any intermediate 
tooling. Generally, the properties of parts produced by SLS are 
relatively inferior compared to other traditional methods. 
However, considering the complexity, the smallness of the scale 
and the ability to produce assemblies as one unit would limit 
suitability of traditional methods. Considering the rapid changes 
taking place in rapid prototyping and manufacturing, there is an 
ever increasing list of candidate materials and commercially 
successful manufacturing techniques, that will eventually make 
metamaterials research to be effectively married to rapid 
manufacturing technologies.  

As mentioned briefly above, silicone gel is used to replace the 
springs in the structure. This replacement is reasonable as long as 
the silicone gel can provide elastic support for the rigid structure 
and the solid masses. Silicone gel is placed inside the half sphere 
cavity at both locations in the unit cell. After the silicone gel is 
well distributed inside the cavity, the solid mass is carefully 
placed at the centre of bottom enclosure. While half the cylinder 
is resting on a silicone gel, the other half is covered from the top 
by the cap. Fig. 5 below depicts the assembly process used to put 
the solid-mass nodes together.  
 

 
 

Fig. 5. Silicone support for solid mass 
 

Subsequently, the assembled structure is placed inside an 
aluminum-wood mould. Then the silicone gel is distributed 

2.	�Fabrication of Milton-Willis 
structure
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As can be seen from the series of mathematical expressions 
above, stress is coupled directly with velocity and the momentum 
density is directly related with the displacement gradient, 
satisfying the elastic metamaterials envisioned by Milton [7]. 
 
 

2.  Fabrication of Milton-Willis structure 
 

The material presented by Milton & Willis is a theoretical 
material, in which manufacturability of the material is not 
considered. An attempt is made in this paper to design and 
fabricate the Milton-Willis material as depicted in Fig. 4 below. 
 

 
 

Fig. 4. Designed Milton-Willis material configuration 
 

All parts of the material shown above are rigid, and the 
material consists of 4 different parts which are named as shown in 
Fig. 4. The rigid parts are made of nylon; solid masses used are 
lead and steel balls. Instead of using springs, silicone gel is used 
to support the rigid structure and the solid masses. As mentioned 
briefly above, rigid parts of the material need to be considerably 
stiffer than the elastic parts. This is verified by performing tensile 
tests on both materials (nylon and silicone). Following table lists 
the material used and relevant properties. 

Eight ball joints are used in this material structure. However 
rotation about X and Y axis is limited, meanwhile rotation about 
Z axis is allowed. Slots at the joint enclosure allow the Z axis 
rotation, while small height clearance between bar and the joint 
enclosure limits the X and Y axis rotation. This range of motion 
follows the requirement of the model as described in the literature 
where model motion is mainly in the XY plane. 

Table 1.  
Material properties 

Material Properties Value 

Steel 

Elastic Modulus 2 x 109 Pa 

Poisson's ratio 0.3 

Density 7850 kg/m3 

Silicone 
Elastic Modulus 1.66 x 105 Pa 

Density 2330 kg/m3 
 

The rigid structure is made by using the selective laser 
sintering (SLS) method. The choice of SLS over other plastic 
manufacturing methods is due to the ease of manufacturing the 
complex shape direct from CAD files, without any intermediate 
tooling. Generally, the properties of parts produced by SLS are 
relatively inferior compared to other traditional methods. 
However, considering the complexity, the smallness of the scale 
and the ability to produce assemblies as one unit would limit 
suitability of traditional methods. Considering the rapid changes 
taking place in rapid prototyping and manufacturing, there is an 
ever increasing list of candidate materials and commercially 
successful manufacturing techniques, that will eventually make 
metamaterials research to be effectively married to rapid 
manufacturing technologies.  

As mentioned briefly above, silicone gel is used to replace the 
springs in the structure. This replacement is reasonable as long as 
the silicone gel can provide elastic support for the rigid structure 
and the solid masses. Silicone gel is placed inside the half sphere 
cavity at both locations in the unit cell. After the silicone gel is 
well distributed inside the cavity, the solid mass is carefully 
placed at the centre of bottom enclosure. While half the cylinder 
is resting on a silicone gel, the other half is covered from the top 
by the cap. Fig. 5 below depicts the assembly process used to put 
the solid-mass nodes together.  
 

 
 

Fig. 5. Silicone support for solid mass 
 

Subsequently, the assembled structure is placed inside an 
aluminum-wood mould. Then the silicone gel is distributed 
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Fig. 8. Control volume analysis 
 

Imagine that the structure rests inside the green boundary. 
Only planar case is considered in the simulation (x1 x2 plane). 
Axial forces are found along the x1 and x2 axes of the control 
volume. Shear forces are also found at the periphery of the control 
volume. Stress-strain and momentum-velocity relation can be 
obtained based on the parameters monitored and geometrical data 
of the structure. Both relations can be arranged into matrix form 
as shown below, with stress and momentum at one side and 
related by a constant matrix with momentum and velocity at the 
other side. 

 (3) 
 

After stress, strain, momentum and velocity are fully defined. 
The constant can be calculated. This constant is the indicator on 
how the structure behaves dynamically. Based on the simulation 
result the constant matrix yields the following result. 

 

 (4) 
 

In a normal material, 11 and 22 depend on the axial strain 
that is indicated with the displacement gradient in this case (ux1x1, 
ux2x2). However in this structure 11 is only dependent on ux1x1. 
While 22 is behaving abnormally as it only depends on shear 
strain. 12 is dependent on shear strain which is indicated by ux1x2, 

ux2x1 in this case. However its counterpart 21 is behaving out of 
ordinary where no dependency with shear strain is evident. P1 is 
the momentum density in x1 direction, meanwhile p2 is 
momentum density in x2 direction which normally depends on 
velocity. This is clearly evident in the silicone structure where p1 
and p2 are highly dependent on velocity. 

Based on the constant matrix X shown above, it can be 
concluded that the silicone model is behaving as a normal 
material. The proposed coupling of stress and velocity and 
momentum and strain are not evident in this structure. However 
an encouraging result from this simulation is the mechanism in 
the structure is behaving normally. The proposed relation is not 
evident due to the size the structure has. Ideally, as the size is 
reduced the structure would show the proposed stress and 
momentum behaviour. 

 
 

4. Conclusion 
 

Elastic metamaterials structure proposed by Milton-Willis is 
being realized and constructed as part of the work presented in 
this paper. The derivations proposed in Milton’s paper were made 
based on the assumptions of ideal conditions around the 
material’s size being infinitesimal and different parts of structures 
behaving as expected. However, the real model will not behave 
exactly like this, considering that it has a finite size in reality. 

FEA was done on the feature of the built Milton-Willis model. 
First modal analysis was performed to obtain the natural 
frequency of solid mass and the overall structure. It was found 
that the natural frequency of the solid mass matched with natural 
frequency of the overall structure. This is as expected since mass 
of the overall structure is basically constituted of the solid masses. 
The natural frequency is then used as the operating frequency for 
the dynamic analysis where the overall structure is displaced by a 
sinusoidal waveform operating at the natural frequency of the 
overall structure. Natural frequency is chosen as the operating 
frequency to allow the dynamic effect to be seen clearly. Based on 
the dynamic analysis, the material shows normal material 
behaviour where stress is only dependent on strain and 
momentum is only dependent on velocity. 

The built Milton-Willis model moved well dynamically. All 
joints in rigid part are moving well without too much resistance. 
Even though the material doesn’t show the unusual dynamic 
behaviour as expected, the smooth movement of the rigid 
structure inside the silicone slab is encouraging. Our prediction is 
the results will get more encouraging, if the size of the overall 
structure is reduced. Also, stiffness difference between elastic 
support and rigid parts must be increased. An experimental 
evaluation of this structure is currently being undertaken. 
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