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Abstract

AISI 304 austenitic stainless steel is generally regarded as difficult to machine steels on account of their 
high strength, high work hardening tendency and poor thermal conductivity. The machinability of AISI 304 
was investigated by some researchers using uncoated and coated carbide inserts, but its machinability using 
advanced cutting inserts like alumina was not explored adequately. Therefore, in this paper the machinability 
of AISI 304 is being evaluated by machining (CNC turning process) the work material using alumina inserts. 
The machinability is evaluated in terms of surface finish achieved on the work piece, tool wear encountered and 
tool life achieved by the inserts for various machining time and the cutting zone temperature generated during 
the process.
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1. Introduction 

 
Anthony and Adithan had investigated the performance of 

carbide inserts on machining of AISI 304 austenitic steel to 
determine the influencing factors of surface roughness and tool 
wear. It was reported that cutting speed and feed rate had 
remarkable influence on surface roughness and tool wear [1]. 
Zafer and Sezgin determined the best suitable cutting condition 
and cutting parameters for machining of AISI 304 stainless steels 
by considering the acoustic emission [2]. The best cutting speed 
and feed rate were determined based on flank wear, Built Up 
Edge, chip form, surface roughness of the machined samples and 
machine tool power consumption. Apart from classical methods, 
it was also reported that the acoustic emission generated during 
machining could be used to evaluate the machinability. It was 
found that, the lowest flank wear was observed at a feed rate of 
0.25 mm/rev for all the cutting speeds. So, if the surface 
roughness quality is important, feed rate should not be higher than 
0.25 mm/rev. As cutting speed increased, built up edge decreased; 

however as feed rate increased, built up edge also increased. 
Akasawa et al. reported that Austenitic stainless steels are difficult 
to machine [3]. Qi HS and Mills made many attempts to improve 
the machinability of Austenitic stainless steels [4]. Kopac and Sali 
had reported that the machinability of AISI 304 is more difficult 
than the other alloy steels due to reasons such as having low heat 
conductivity, high built-up edge tendency and high deformation 
hardening [5]. 

Ibrahim conducted turning tests on two grades of Austenitic 
stainless steels (AISI 304 and AISI 316) [6]. The researcher 
concentrated on the influences of cutting tool coating, cutting 
speed and workpiece materials on surface roughness and cutting 
forces. Findings were presented as below  
 Cutting speed was found to have a significant effect on the 

machined surface roughness values. With increasing cutting 
speed, surface roughness values decreased until a minimum 
value was reached, beyond which they increased. 

 Higher surface roughness values at lower cutting speeds were 
attributed to the high BUE formation tendency. 
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Ihsan et al., carried out turning tests on AISI 304 Austenitic 
stainless steel to determine the optimum machining parameters 
[7]. Metal cutting involves the generation of large amount of heat 
and in the machining of AISI 304 stainless steel it is not 
dissipated rapidly due to the thermal conductivity of this material. 
Determination of the optimum cutting speed had been aimed 
when turning AISI 304 Austenitic stainless steel using cemented 
carbide-cutting tools. A decrease in tool wear was observed with 
increasing the cutting speed. The criterion for the tool life was 
0.3 mm width flank wear and the optimum cutting speed and feed 
rate was found to be 180 m/min and 0.24 mm/rev respectively for 
the flank wear criterion.  

Trent reported that austenitic stainless steels are characterized 
by a high work hardening rate and low thermal conductivity [8]. 
When machining this material, cutting force variation is also 
much more obvious than those when machining unalloyed steel. 
Jiang et al., reported that austenitic stainless steel is generally 
regarded as more difficult to machine than carbon and low alloy 
steels on account of their high tensile strength, high work 
hardening tendency and poor thermal conductivity [9]. Work 
hardening is recognized to be responsible for the poor 
machinability of Austenitic stainless steels, in addition, they bond 
very strongly to the cutting tool during cutting and when chip is 
broken away, it may take with it a few fragments of the tool, 
particularly when cutting with cemented carbide tools. 

Alumina tools are widely used in the manufacturing industry 
for the machining of various hard materials. Interest in ceramics 
as a high speed cutting tool material is based primarily on 
favorable material properties. As a class of materials, ceramics 
possess high melting point, excellent hardness and good wear 
resistance. Unlike most metals, hardness levels in ceramics 
generally remain high at elevated temperature, which means that 
cutting tip integrity is relatively unaffected at high cutting speeds 
[10]. The presence of TiC in alumina inserts increased the 
resistance to thermal and mechanical shocks, and improved the 
resistance to crack initiation and propagation [11]. These 
characteristics enable alumina tools to satisfactorily machine such 
steels, especially when finish and continuous cutting. 
 
 

2. Experimentation 
 

Literature reveals that feed rate have more influence on 
surface roughness followed by nose radius of the tool when 
compared to other machining parameters. Likewise, cutting speed 
influences tool life and cutting zone temperature than any other 
cutting parameters. In order to understand the trend of variations 
of these parameters experiments are conducted by choosing 
a range of values of cutting parameters and the output parameters 
are recorded. The experimental conditions are mentioned in 
Table 1. The cutting tools (alumina inserts) used for 
experimentation are TNGA 160404, TNGA 160408 and TNGA 
160412 and the tool holder is TTJNR2525. The machine tool used 
for experimentation is a Jobber XL CNC machine from ACE 
designer with Fanuc control system; variable speed motor  
50-4000 rpm and 7.5 kW rating. Fig. 1 shows the machine tool 
with an integrated computer screen display where programming 
can be done and the operating parameters for each trial can be 
easily fed. It also shows the workpiece loaded in the chuck and 

clamped between centers. The sensor cable for measuring the 
tool-shim interface temperature from the tool holder to the display 
unit is also shown. Further, the machining time display and the 
temperature display units are shown in the Fig. 1. During the 
machining process i.e. for each experimental trial appropriate 
cutting fluid is applied through nozzles fixed in the tool holder 
(turret). After each trial the flank wear on the tool was measured 
using CARL ZIESS Optical Microscope having 50 X to 1500 X 
magnification, equipped with Clemex Vision Professional Edition 
Image Analysis Software. The surface roughness on the 
workpiece was measured using Mitutoyo Surface Roughness 
tester. The cutting zone temperature developed during the 
machining process was measured by a thermocouple, Iron - 
Constantan (J-Type) Tool Tip type with a temperature range of 
30-400ºC, with sensitivity of ± 0.1ºC. The Iron - Constantan  
(J-Type) thermocouple used was a base metal system using 
a positive arm of Iron wire and a negative arm of Constantan 
wire. A thin thermocouple of diameter 0.5 mm was mounted in 
a shallow groove on the silver steel shim, so that, it could detect 
the average temperature developed at the interface of the insert 
and the shim. Fig. 2 indicates the actual temperature measurement 
system which shows the tool holder, the cutting insert, the shim 
and the thermocouple cable placed between the insert and the 
shim. Before each test, the system was calibrated in the 
laboratory. The reliability of the technique had been checked in 
the preliminary tests by repeating the same cutting condition 
(including the types of cutting fluids) and thermocouple 
conditions several times using the workpiece material, the results 
were consistent and satisfactory. Once the consistent and 
satisfactory results were observed, the actual data collection was 
performed and recorded.  
 
Table 1. 
Experimental conditions 

1 Work Material AISI 304 Austenitic Steel  
(diameter 50 mm) 

2 Tool Material Alumina inserts (70% Al2O3 & 30% TiC) 
3 Cutting speed 80, 100, 120, 140, 160 & 180 m/min 
4 Feed rate 0.06, 0.1, 0.14, 0.18, 0.22 mm/rev 
5 Depth of cut 0.2, 0.3 & 0.4 mm 
6 Nose radius 0.4, 0.8 & 1.2 mm 
7 Cutting Fluid Soluble oil, St. cutting oil & Coconut oil 

 

 
 

Fig. 1. CNC Machine tool used for experimentation 
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Ihsan et al., carried out turning tests on AISI 304 Austenitic 
stainless steel to determine the optimum machining parameters 
[7]. Metal cutting involves the generation of large amount of heat 
and in the machining of AISI 304 stainless steel it is not 
dissipated rapidly due to the thermal conductivity of this material. 
Determination of the optimum cutting speed had been aimed 
when turning AISI 304 Austenitic stainless steel using cemented 
carbide-cutting tools. A decrease in tool wear was observed with 
increasing the cutting speed. The criterion for the tool life was 
0.3 mm width flank wear and the optimum cutting speed and feed 
rate was found to be 180 m/min and 0.24 mm/rev respectively for 
the flank wear criterion.  

Trent reported that austenitic stainless steels are characterized 
by a high work hardening rate and low thermal conductivity [8]. 
When machining this material, cutting force variation is also 
much more obvious than those when machining unalloyed steel. 
Jiang et al., reported that austenitic stainless steel is generally 
regarded as more difficult to machine than carbon and low alloy 
steels on account of their high tensile strength, high work 
hardening tendency and poor thermal conductivity [9]. Work 
hardening is recognized to be responsible for the poor 
machinability of Austenitic stainless steels, in addition, they bond 
very strongly to the cutting tool during cutting and when chip is 
broken away, it may take with it a few fragments of the tool, 
particularly when cutting with cemented carbide tools. 

Alumina tools are widely used in the manufacturing industry 
for the machining of various hard materials. Interest in ceramics 
as a high speed cutting tool material is based primarily on 
favorable material properties. As a class of materials, ceramics 
possess high melting point, excellent hardness and good wear 
resistance. Unlike most metals, hardness levels in ceramics 
generally remain high at elevated temperature, which means that 
cutting tip integrity is relatively unaffected at high cutting speeds 
[10]. The presence of TiC in alumina inserts increased the 
resistance to thermal and mechanical shocks, and improved the 
resistance to crack initiation and propagation [11]. These 
characteristics enable alumina tools to satisfactorily machine such 
steels, especially when finish and continuous cutting. 
 
 

2. Experimentation 
 

Literature reveals that feed rate have more influence on 
surface roughness followed by nose radius of the tool when 
compared to other machining parameters. Likewise, cutting speed 
influences tool life and cutting zone temperature than any other 
cutting parameters. In order to understand the trend of variations 
of these parameters experiments are conducted by choosing 
a range of values of cutting parameters and the output parameters 
are recorded. The experimental conditions are mentioned in 
Table 1. The cutting tools (alumina inserts) used for 
experimentation are TNGA 160404, TNGA 160408 and TNGA 
160412 and the tool holder is TTJNR2525. The machine tool used 
for experimentation is a Jobber XL CNC machine from ACE 
designer with Fanuc control system; variable speed motor  
50-4000 rpm and 7.5 kW rating. Fig. 1 shows the machine tool 
with an integrated computer screen display where programming 
can be done and the operating parameters for each trial can be 
easily fed. It also shows the workpiece loaded in the chuck and 

clamped between centers. The sensor cable for measuring the 
tool-shim interface temperature from the tool holder to the display 
unit is also shown. Further, the machining time display and the 
temperature display units are shown in the Fig. 1. During the 
machining process i.e. for each experimental trial appropriate 
cutting fluid is applied through nozzles fixed in the tool holder 
(turret). After each trial the flank wear on the tool was measured 
using CARL ZIESS Optical Microscope having 50 X to 1500 X 
magnification, equipped with Clemex Vision Professional Edition 
Image Analysis Software. The surface roughness on the 
workpiece was measured using Mitutoyo Surface Roughness 
tester. The cutting zone temperature developed during the 
machining process was measured by a thermocouple, Iron - 
Constantan (J-Type) Tool Tip type with a temperature range of 
30-400ºC, with sensitivity of ± 0.1ºC. The Iron - Constantan  
(J-Type) thermocouple used was a base metal system using 
a positive arm of Iron wire and a negative arm of Constantan 
wire. A thin thermocouple of diameter 0.5 mm was mounted in 
a shallow groove on the silver steel shim, so that, it could detect 
the average temperature developed at the interface of the insert 
and the shim. Fig. 2 indicates the actual temperature measurement 
system which shows the tool holder, the cutting insert, the shim 
and the thermocouple cable placed between the insert and the 
shim. Before each test, the system was calibrated in the 
laboratory. The reliability of the technique had been checked in 
the preliminary tests by repeating the same cutting condition 
(including the types of cutting fluids) and thermocouple 
conditions several times using the workpiece material, the results 
were consistent and satisfactory. Once the consistent and 
satisfactory results were observed, the actual data collection was 
performed and recorded.  
 
Table 1. 
Experimental conditions 

1 Work Material AISI 304 Austenitic Steel  
(diameter 50 mm) 

2 Tool Material Alumina inserts (70% Al2O3 & 30% TiC) 
3 Cutting speed 80, 100, 120, 140, 160 & 180 m/min 
4 Feed rate 0.06, 0.1, 0.14, 0.18, 0.22 mm/rev 
5 Depth of cut 0.2, 0.3 & 0.4 mm 
6 Nose radius 0.4, 0.8 & 1.2 mm 
7 Cutting Fluid Soluble oil, St. cutting oil & Coconut oil 

 

 
 

Fig. 1. CNC Machine tool used for experimentation 
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Fig. 5. Feed rate Vs Surface roughness for different Cutting speed 
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Fig. 7. Cutting Speed Vs Temperature for different Cutting fluid 
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Fig. 8. Cutting Speed Vs Temperature for different Feed rates 
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4. Conclusions 
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of 0.3 mm threshold value). Further experimentation was carried out 
to understand the variation of surface roughness and cutting zone 
temperature for the variation of certain cutting parameters while 
keeping the other parameters constant. 
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