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ABSTRACT

Purpose: Tree Parity Machines are specific artificial neural networks used to construct relatively secure key
exchange protocol [12,15,24]. The level of networks’ compatibility is measured by weight vectors mutual
overlap. However, to calculate such mutual overlap, one needs to be familiar with both weights’ vectors, which
is impossible in practical key exchange. This paper discusses other schemes to evaluate compatibility of weights’
vectors. The first one uses Euclidean distance of both weights’ vectors. The second one is based on frequencies
of common TPM’s outputs and as such does not rely on the weights’ vectors. Both approaches to handle secure
key exchange protocol facilitate more extended analysis of many technical processes in which a vital role plays
an incorporation of a non-standard high-quality method securing any sensitive data.
Design/methodology/approach: Computer simulations of TPM synchronization are conducted using authors’
program and the obtained results are statistically analyzed herein.

Findings: We found experimentally that mutual overlap of the weights’ vectors is highly correlated with
Euclidean distance. Additionally, frequencies of common outputs in given numbers of learning cycles stay in
high correlation with this mutual overlap and Euclidean distance. The latter can subsequently be used to draw
pertinent conclusions about TPM’s weights compatibility.

Practical implications: Proposed methods, especially frequencies analysis, can be applied to key exchange
protocol to improve its security. Determining the vectors compatibility level before synchronization completion
allows qualifying this synchronization to one of the possible time classes.

Originality/value: New ideas presented in this work involve application of Euclidean distance and common
output frequencies to calculate the networks compatibility given by weights mutual overlap.
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1. Introduction

The main purpose of cryptography is to provide a safe method
of communication between two or more persons (or among the
other different entities). Substantial amount of communication
takes place on an open channel. Therefore there are always risks
that sent message will be intercepted by unauthorized parties
eager to infiltrate its content [9]. Many sophisticated algorithms
are developed to ensure, with the satisfactory level of certainty the
preservation of communication confidentiality. The sender, using
these algorithms, transforms the plaintext into the cryptogram and
sends it to the recipient, which in turn is able to transform it back
to the original message. Encryption and decryption algorithms
perform transformations that depend on additional data called
cryptographic keys. Thanks to the additional keys cryptosystem,
security is shifted from the used algorithms to the problem of
distribution and the security of the used keys. In asymmetric
cryptography, the sender and receiver use a pair of keys, one of
which is used to encrypt and the second one to decrypt messages
[19]. In symmetric cryptography, the sender and receiver use the
same key for encryption and decryption [19]. A major problem
thus becomes a key management, in particular to ensure the safety
of their distribution. This problem was solved in 1976 by Diffie
and Hellman [19,26], who published the idea a key exchange
protocol with the use of an open channel. It is based on
computationally hard problem which is the calculation of the
discrete logarithm problem in the cyclic group. The use of this
type of problems for construction of cryptosystems guarantees the
fulfillment of crucial security inequalities, which means that the
cost of breaking security must be disproportionate to the benefits
of breaking the cipher.

An interesting alternative for cryptosystems based on number
theory can be neurocryptography [13,14]. Artificial neural
networks are effective and widely used analytic tools. They are
also applied, as other artificial intelligences’ methods, to research
in material science [1-5,16,17] or in e-foresight [6,7].
Characteristic for these networks is ability to learn from
examples, which allows solving given problem without
constructing a classical algorithm [6,25]. Neurocryptography
introduces artificial neural networks as a tool for encryption and
decryption. It also serves as a cryptographic key exchange method
on an open channel. The latter approach is based on the
discovered by Kanter et. al. [11,12] the phenomenon of the
networks’ synchronization during their mutual learning. At the
beginning of the key exchange procedure, each partner generates
random values of their networks’ weights and this initial state is
kept in secret. During mutual learning both networks’ weight
vectors generally coincide to establish common values, which can
be used as a cryptographic key in further communication. For this
particular application a specific multi-layer, feed-forward network
with a tree-like structure is used. Such tree with this special
topology is commonly called a Tree Parity Machine (in
abbreviation TPM).

Network synchronization process is a stochastic process
rendering networks’ weights modification according to certain
algorithms of learning. The most important parameter describing
the dynamics of this process is the value of weights’ vectors
mutual overlap [23]. In order to determine such overlap, one
needs to know the weights’ vectors of both synchronized
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networks. However, the practical application of this method,
requires that both weights’ vectors remain secret. The method
presented here relies on measuring the frequencies of equal
networks output in a given number of previous steps. We found
that these frequencies are in significant linear relationship with
the mutual overlap. We also propose here an alternative method
of evaluating the level of synchronization of the network based on
the Euclidean distance between both weights’ vectors. Our tests
indicate a strong correlation between Euclidean distance and the
currently used mutual overlap. In addition, the normalized
distance between vectors is more strongly correlated with the
measured frequencies of TPM’s equal outputs than with the
mutual overlap. This research permits to evaluate the level of
network synchronization without knowing their weights’ vectors.

Tree Parity Machine network is a multi-layered, feed-forward
network with disjoint receptive fields [12]. Diagram of such
network is presented in Fig. 1. The illustrated structure can be
defined by three parameters: K-N-L. Here integer K determines
the number of artificial neurons in the hidden layer. The number
N yields, in turn the quantity of input values for each neuron. The
admitted output fired by each neuron is assumed to be either 1 or
-1 according to following formula:

o {‘Lif Y1 w;ixji < 0,
d 1,lf E?Lleini 03

(M

The signal reaching the neuron is multiplied by
a corresponding weight, as was shown in sums above. Each
weight wj; is an integer falling within the range of -L to L. Each
TPM network has KN of such weights, so it can take one of the
(2L+1)*N states. At the beginning of synchronization process both
partners choose at random, different values of weights for their
network. The initial state of each network is kept secret, and
because of the use of public input values, the disclosure of the
initial weights values would allow to break this protocol. For two
networks the number of possible states increases to the
(2L+1)2"N Output of the whole network is calculated as the
product of the outputs of the hidden layer neurons which has
a value of either 1 or -1, according to the formula:

K

T = j=10-‘

’ 2)

Each of the output values can be obtained as one of the 2K-1
combinations of the results of the hidden layer. For example, for a
network with K=3 and output equals to 1, there could be one of
four combinations of the hidden layer results D={(1,1,1),
(-1,-1,1), (-1,1,-1), (1, -1, -1)}.

Hebbian rule [10,20,22] used for network learning, modifies
the value of weights if the result of the network is consistent with
the expected result. In the TPM network synchronization, the role
a teacher is played by other party’s network. If two networks
return the same outcomes for the common input vector, the
weight of these neurons, which had result consistent with the
result of the entire network are modified to strengthen their
connection. Returning to our example from above, if the networks
output were 1 and hidden layer neurons had first combination
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from the set D, the weights of all hidden neurons would be
changed. For other combinations of outputs only one neuron’s
weights is modified (the third, the second and the first one,
respectively). The attacker does not know the internal
representation of the result of the attacked network as, at each step
synchronization, involving a change of weight, he has 25!
possible options of weight changes. To synchronize the network
one of three methods of learning can be invoked:

e Anti-Hebbian rule [11-15]. Weights’ modification complies

here with the following formula:

(t+1) _ _(®
ka. = Wki — X, O - (3)

e Hebbian rule [15,23]. Modification is defined according to the

rule:
(t+1) ()
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e Random Walk rule [23]. Modification is given by the formula ] S ]
listed below: Fig. 3. Synchronization time histogram for TPM 3-101-5
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Fig. 1. Tree Parity Machine topology
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Fig. 4. Synchronization time histogram for TPM 3-101-7

In the first rule weights are modified if TPM’s outputs are
different and whole process leads to reverse weights’ vectors.
Other methods change weights when outputs are equals and give
the same weights’ vectors in both networks. Once both networks
reach the state of synchronization they stay in such synchronized
mode regardless of the time devoted for further learning. In
addition, since the weights vectors are compatible, the networks
return the same results for the common input vector. Long enough
exchange of networks’ compatible results indicates their
synchronization to be completed.

Synchronization of the examined TPM networks is astochastic
process, and the time required to achieve full synchronization
forms the left-sided histogram. We present now the pertinent
Fig. 2. Synchronization time histogram for TPM 3-101-3 synchronization time histograms for the Tree Parity Machine

142
179
215
252
289
325
362
399
435
472
509
545
582
619
655
692
728
765
802
838
875
912
948
985
1022
1058

The evaluation of the TPM synchronization on the basis of their outputs m


http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org

Journal of Achievements in Materials and Manufacturing Engineering

networks with the respective topologies: 3-101-3, 3-101-5 and 3-
101-7 learned using Random Walk rule. These histograms are
created upon analysis of 5000 synchronizations for each network
(see Figs. 2-4). The -corresponding generated results are
subsequently divided into 26 classes. Despite the fact that these
networks synchronize upon different elapsing times, their
respective histograms indicate a similar behaviour pattern. In fact
their shapes show a big degree of similarity.

As justified in [8] up to 75% of networks synchronize in less
than half of the longest observed synchronization time. Shorter
synchronization time improves system safety by reducing the
amount of information available to an attacker, and the time to
teach his network.

2. Results and discussion

Analysis of TPM synchronization process conducted for this
method is based on the knowledge of both network weights’
vectors. The main parameter determining the level of network
synchronization is weights’ vectors mutual overlap calculated for
each hidden layer neuron using the formula (here o denotes the
dot product):

AB witow?

T et o o

where i is the index of neuron in network, and w;* and w;% are
weight vectors of i-th neuron of the networks A and B,
respectively. More precisely, the calculated parameter is the
cosine of the angle between the weights vectors of i-th hidden
layer neuron. At the beginning of the synchronization, p;/*® has
a value close to 0, and subsequently along the iteration process is
being changed to achieve a value 1 for a synchronized network.
For a fully synchronized network weights’ vectors overlap equals
1 because the angle between them is equal to 0. Further analysis is
based on the connected weights’ vectors of all hidden layer
neurons. It consists of KN integers ranging from -L to L.
Knowing both partner’s A and B network weights’ vectors, one
can measure a total mutual overlap over entire network
analogously to the measurements of mutual overlap for each
single neuron:

w
pfﬁ = cosf —

O

Another scheme to determine the compatibility of weights’
vectors is to calculate the distance between them using the
Euclidean metric. Such distance between two vectors of weights
for both networks is given by the well-known formula:

dist(4,B) = ||lw*—w?F|| = | gfl(w_,f — w,f)z. ®

In this case, the index k indicates the value of the specific
weight from the networks’ connected weight vectors. Relationship
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of the cosine of the angle between the weights’ vectors and the
distance between them is given by the cosine theorem holding for
arbitrary unitary spaces:

A B A B

212 = lwA 1P + w21 =2 (WAL w2 ] - cos 6. 9)

[lw*—w

An important difference between the cosine of the angle
between two vectors, and the distance between them is the range,
which includes the value of both functions and changes these
values during synchronization of the networks. Cosines of the
initial weights’ vectors take values close to 0 and keep growing to
ultimately approach the value 1 for fully synchronized networks.
Euclidean distance at the beginning of the synchronization takes
large values depending on the size of the network and the range,
which includes the weight, while for the synchronized network
such distance is set to 0.

As an example we consider the two TPM networks with the
selected topology of the type 3-101-3. The first one synchronizes
within 348 cycles. This number coincides with the average
synchronization cycle number computed for the nets of the
analogous size and simulated within 5000 synchronizations. The
second net synchronizes in 620 cycles and this time belongs to the
middle class of histogram presented above. Fig. 5 presents cosine
and Euclidean distance values for first TPM, and Fig. 6 the same
values for the second TPM. Given a large disproportion occurred
within the ranges between the corresponding cosine values and
Euclidean values Figs. 5 and 6 contain two ordinates i.e. two
Y-axes.
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Fig. 5. Euclidean distance and cosine of the first TPM

For the comparison between these two values it is therefore
necessary to rescale them to a common set of values. For this
purpose, a reversal and normalization distance is applied
according to the formula:

dist [A,B)t—minlsj—stsynm dist(A,B);

dist(4,B), =1—

MAK, <fetoynon dist (A,B)j——mm15j—5t5ym,1 dist(A4,B); (10)

Fig. 7 and Fig. 8 show comparison of cosine and normalized
and reversed Euclidean distance for the same synchronization as it
is shown earlier in Fig. 5 and Fig. 6.
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Fig. 6. Euclidean distance and cosine of the second TPM
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Fig. 7. Normalized and Reversed Euclidean distance and cosine
for the first TPM
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It is visible that both values are strongly correlated.

The obtained distances for analyzed networks are highly
correlated with the respective values of cosine. As demonstrated
by experimental means, the correlation coefficient of mutual
overlap and Euclidean distance for the network in Table 1 exceeds
0.95. This means that the proposed method for evaluating the
degree of synchronization is as effective as the methods used so
far. In addition normalized distances tend to be more correlated
with the frequency occurrence of the network consistent results.

The practical application of examined phenomenon appearing
during TPM network synchronization for the construction key
exchange protocol requires that the network weights are kept in
secret. Communication parties cannot therefore simply use the
methods described above. The only knowledge for partners
exchanging key is the result of the network other part for the common
input vector. Based on the available results of both networks, partners
can set the frequency with which both networks have the same
results. Using these frequencies, one can reason on a compatibility of
network weights’ vectors. The method presented below allows the
calculation of the frequency of equal networks results in s previous
steps, where s is a given natural number. Created sequence illustrates
the dynamics of the network synchronization.

Let the (a,) be a sequence, and a,=1 if t2=12 and a,=0 if
7," # 1,°. Index n indicates the number of learning step and
n=1,2,.. tynn. Let sequence (b,) be defined as an average of s
elements from (a,) with indices n,n-1,...,n-s+1. If index 7 is less
than number of elements to analyze s, then in sequence (a,) there
aren’t s elements before n-th element, and it has to be calculated
as an average of all available elements form the first one. This
sequence is given by formula:

1
bn = n T‘1=n—j!+1 Ay (11

where I=min(n,s).

The analysis conducted herein indicates, that for the majority of
the analyzed networks, a significant linear relationships hold
between the frequencies of common TPM’s outputs and the mutual
overlap, as well as between these frequencies and Euclidean
distance. However, the second correlation is usually stronger. For
networks synchronizing in a longer time the correlation is little
lower and suggests a moderate correlation. This means, that the
communication partners can infer about the compatibility of
weights’ vectors by analyzing the frequency of consistent results,
without knowing the other parties weights’ vector.

Figs. 9 and 10 show normalized and reversed Euclidean
distance and frequencies for s=75 and s=125. First diagram shows
frequencies divided by 1, as presented in formula above. The sum
of consistent results for both nets, under fixed preceding steps is
divided by the quantity of accessible results. The latter does not
yield satisfactory adjustment fitting at the beginning of the
synchronization process.

A simple inspection shows, that although the first parts of the
generated plots above have different values, they can still be
much better adjusted upon dividing computed frequencies by s
instead of dividing them by 1. Once the division by 1 is applied,
the number of consistent results of both networks obtained in the
previous steps is divided by 1. It can turn out that the occurrence
of the few consistent results of both networks at the initial phase
of synchronization may yield high frequencies thanks to the small
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value of the divisor 1. The latter implies, that despite insignificant Fig. 11 and Fig. 12 shows these frequencies and Euclidean
consistency of weights’ vectors the computed frequency of distance.

consistent results is still high. To handle this inconvenience, so
that the frequencies’ values are better fitted to the consistency of
the respective weights’ vectors the above mentioned divisor 1 is
increased to s. The number s is determined on the basis of the
quantity of the so-far analyzed steps. For the initial
synchronization cycles we observed the cases when the number of 05 A e o
all steps is smaller than s. In such a case the analysis of all 1 //I [f”r\/
cycles with 1<s is performed and consequently in such eventuality

the quantity of consistent results is divided by 1. A slight 24
modification of this approach is also here accomplished. Namely, 06 o A
irrespectively from the number of accessible cycles the quantity G A

f istent Its is al divided b iori ified ' rf"
OI consistent results 1S aways 1vi1de y an a pr10r1 spec1 1€ _— VM'A’IV

= DIST NORM REV PR_75 =——PR_125

1

0,8

length s of the cycles. This procedure is still conducted if the

corresponding summation runs over only one index. The 03 1

respective frequencies derived with this scheme are much better 02

fitted to the real distance between the weight’s vectors.
The alternative sequence is given by formula:

01

0

bnzé ?:?’l—l‘f'la'ﬂ? (12) Toomomoonamnamaanann
Fig. 9. Normalized and Reversed Euclidean distance and
where l=min(n,s). frequencies divided by 1 for the first TPM
Table 1.
Results of analysis
Synchronization time Correlation dist and cos FR 25 FR 75 FR125 FR175 FR225
0.952
150 corr dist fr 0.933 0.948 0.919 0.913 0.913
corr cos fr 0.943 0.930 0.937 0.946 0.946
0.970
200 corr dist fr 0.890 0.822 0.755 0.747 0.747
corr cos fr 0.795 0.680 0.613 0.618 0.621
0.962
250 corr dist fr 0.891 0.934 0.934 0.934 0.935
corr cos fr 0.813 0.853 0.858 0.864 0.890
0.958
300 corr dist fr 0.841 0.833 0.801 0.782 0.791
corr cos fr 0.712 0.684 0.651 0.641 0.660
0.967
350 corr dist fr 0.808 0.831 0.771 0.698 0.617
corr cos fr 0.700 0.688 0.609 0.521 0.432
0.952
400 corr dist fr 0.737 0.783 0.739 0.754 0.750
corr cos fr 0.593 0.637 0.628 0.675 0.661
0.963
450 corr dist fr 0.701 0.656 0.555 0.463 0.368
corr cos fr 0.519 0.446 0.327 0.224 0.123
0.968
500 corr dist fr 0.692 0.702 0.679 0.645 0.623
corr cos fr 0.579 0.566 0.532 0.493 0.473
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Fig. 10. Normalized and Reversed Euclidean distance and
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Clearly, the computed herein frequencies of the consistent
exchange results for both nets correspond very strongly to the
weights’ distance.

In our testing, 5000 synchronizations are carried out for the
network  with the structure 3-101-3. The respective
synchronization times are within the range from 142 to 1095
cycles with the average 348 cycles. Table 1 contains a summary
of correlation coefficients for the analyzed network. It illustrates
networks with synchronization time between 150 and 500 cycles
and the step 50 cycles. For each network it specifies a) the
correlations between distance and the cosine of weight vector, b)
correlation coefficients of sampled frequencies from 25 to 225
with step 50 and the Euclidean distance and c) correlation
coefficients this frequency and cosine, respectively.

The new approach proposed in this paper may serve as a non-
standard and very safe tool to secure sensitive input/output
technical data. In particular this is important for the functioning of
new unique and innovative technologies (see e.g. [18] or [21]).

3. Conclusions

Histogram  describing the frequencies of network
synchronization in a specified number of learning cycles indicates
that usually networks synchronize relatively quickly. There are,
unfortunately, probabilities for which the network will need to
synchronize with the large number of cycles well above the
experimentally computed average synchronization time. In the
worst analyzed case, long synchronization takes over 2.7 times
more cycles then the respective average synchronization. Without
knowing the weights’ vector it would be difficult to categorize
whether the current synchronization falls in the fast group or
whether it will last longer. Our research indicates, that the
frequencies of equal TMP’s output are strongly correlated with
the weights’ vectors mutual overlap and with the vectors
computed with the aid of Euclidean distance. Thus, the analysis of
the frequencies presented here can be exploited by both
communication partners, to assess the networks synchronization
level. Consequently, each investigated synchronization process in
question can be classified to either the long or the short one (or
alternatively can be qualified into one of the predefined time
duration zones).
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