
© Copyright by International OCSCO World Press. All rights reserved. 2013 Research paper 91

VOLUME 57

ISSUE 2

April

2013
of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

The evaluation of the TPM synchronization 
on the basis of their outputs

M. Dolecki a,*, R. Kozera a,b, K. Lenik c 
a Faculty of Mathematics, IT and Landscape Architecture,  
John Paul II Catholic University of Lublin,  
ul. Konstantynów 1h, 20-708 Lublin, Poland
b Faculty of Applied Informatics and Mathematics,  
Warsaw University of Life Sciences - SGGW,  
ul. Nowoursynowska 159, 02-776 Warszawa, Poland 
c Department of Fundamental Technics, Lublin University of Technology,
ul. Nadbystrzycka 38, 20-618 Lublin, Poland
* Corresponding e-mail address: michal.dolecki@kul.pl

Received 29.01.2013; published in revised form 01.04.2013

Analysis and modelling

Abstract
Purpose: Tree Parity Machines are specific artificial neural networks used to construct relatively secure key 
exchange protocol [12,15,24]. The level of networks’ compatibility is measured by weight vectors mutual 
overlap. However, to calculate such mutual overlap, one needs to be familiar with both weights’ vectors, which 
is impossible in practical key exchange. This paper discusses other schemes to evaluate compatibility of weights’ 
vectors. The first one uses Euclidean distance of both weights’ vectors. The second one is based on frequencies 
of common TPM’s outputs and as such does not rely on the weights’ vectors. Both approaches to handle secure 
key exchange protocol facilitate more extended analysis of many technical processes in which a vital role plays 
an incorporation of a non-standard high-quality method securing any sensitive data.
Design/methodology/approach: Computer simulations of TPM synchronization are conducted using authors’ 
program and the obtained results are statistically analyzed herein.
Findings: We found experimentally that mutual overlap of the weights’ vectors is highly correlated with 
Euclidean distance. Additionally, frequencies of common outputs in given numbers of learning cycles stay in 
high correlation with this mutual overlap and Euclidean distance. The latter can subsequently be used to draw 
pertinent conclusions about TPM’s weights compatibility.
Practical implications: Proposed methods, especially frequencies analysis, can be applied to key exchange 
protocol to improve its security. Determining the vectors compatibility level before synchronization completion 
allows qualifying this synchronization to one of the possible time classes.
Originality/value: New ideas presented in this work involve application of Euclidean distance and common 
output frequencies to calculate the networks compatibility given by weights mutual overlap.
Keywords: Artificial Intelligence Methods; Neurocryptography; Data security
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from the set D, the weights of all hidden neurons would be 
changed. For other combinations of outputs only one neuron’s 
weights is modified (the third, the second and the first one, 
respectively). The attacker does not know the internal 
representation of the result of the attacked network as, at each step 
synchronization, involving a change of weight, he has 2K-1 
possible options of weight changes. To synchronize the network 
one of three methods of learning can be invoked: 
 Anti-Hebbian rule [11-15]. Weights’ modification complies 

here with the following formula: 
 

  (3) 
 
 Hebbian rule [15,23]. Modification is defined according to the 

rule: 
 

 (4) 
 
 Random Walk rule [23]. Modification is given by the formula 

listed below: 
 

 (5) 
 

 
 

Fig. 1. Tree Parity Machine topology 
 

 
 
Fig. 2. Synchronization time histogram for TPM 3-101-3 

 
 

Fig. 3. Synchronization time histogram for TPM 3-101-5 
 

 
 
Fig. 4. Synchronization time histogram for TPM 3-101-7 

 
In the first rule weights are modified if TPM’s outputs are 

different and whole process leads to reverse weights’ vectors. 
Other methods change weights when outputs are equals and give 
the same weights’ vectors in both networks. Once both networks 
reach the state of synchronization they stay in such synchronized 
mode regardless of the time devoted for further learning. In 
addition, since the weights vectors are compatible, the networks 
return the same results for the common input vector. Long enough 
exchange of networks’ compatible results indicates their 
synchronization to be completed. 

Synchronization of the examined TPM networks is astochastic 
process, and the time required to achieve full synchronization 
forms the left-sided histogram. We present now the pertinent 
synchronization time histograms for the Tree Parity Machine 
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from the set D, the weights of all hidden neurons would be 
changed. For other combinations of outputs only one neuron’s 
weights is modified (the third, the second and the first one, 
respectively). The attacker does not know the internal 
representation of the result of the attacked network as, at each step 
synchronization, involving a change of weight, he has 2K-1 
possible options of weight changes. To synchronize the network 
one of three methods of learning can be invoked: 
 Anti-Hebbian rule [11-15]. Weights’ modification complies 

here with the following formula: 
 

  (3) 
 
 Hebbian rule [15,23]. Modification is defined according to the 

rule: 
 

 (4) 
 
 Random Walk rule [23]. Modification is given by the formula 

listed below: 
 

 (5) 
 

 
 

Fig. 1. Tree Parity Machine topology 
 

 
 
Fig. 2. Synchronization time histogram for TPM 3-101-3 

 
 

Fig. 3. Synchronization time histogram for TPM 3-101-5 
 

 
 
Fig. 4. Synchronization time histogram for TPM 3-101-7 

 
In the first rule weights are modified if TPM’s outputs are 

different and whole process leads to reverse weights’ vectors. 
Other methods change weights when outputs are equals and give 
the same weights’ vectors in both networks. Once both networks 
reach the state of synchronization they stay in such synchronized 
mode regardless of the time devoted for further learning. In 
addition, since the weights vectors are compatible, the networks 
return the same results for the common input vector. Long enough 
exchange of networks’ compatible results indicates their 
synchronization to be completed. 

Synchronization of the examined TPM networks is astochastic 
process, and the time required to achieve full synchronization 
forms the left-sided histogram. We present now the pertinent 
synchronization time histograms for the Tree Parity Machine 

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper94

Journal of Achievements in Materials and Manufacturing Engineering

M. Dolecki, R. Kozera, K. Lenik 

Volume 57 Issue 2 April 2013

networks with the respective topologies: 3-101-3, 3-101-5 and 3-
101-7 learned using Random Walk rule. These histograms are 
created upon analysis of 5000 synchronizations for each network 
(see Figs. 2-4). The corresponding generated results are 
subsequently divided into 26 classes. Despite the fact that these 
networks synchronize upon different elapsing times, their 
respective histograms indicate a similar behaviour pattern. In fact 
their shapes show a big degree of similarity. 

As justified in [8] up to 75% of networks synchronize in less 
than half of the longest observed synchronization time. Shorter 
synchronization time improves system safety by reducing the 
amount of information available to an attacker, and the time to 
teach his network. 
 
 

2. Results and discussion 
 
Analysis of TPM synchronization process conducted for this 

method is based on the knowledge of both network weights’ 
vectors. The main parameter determining the level of network 
synchronization is weights’ vectors mutual overlap calculated for 
each hidden layer neuron using the formula (here  denotes the 
dot product): 
 

  (6) 
 
where i is the index of neuron in network, and wi

A and wi
B are 

weight vectors of i-th neuron of the networks A and B, 
respectively. More precisely, the calculated parameter is the 
cosine of the angle between the weights vectors of i-th hidden 
layer neuron. At the beginning of the synchronization, i

AB  has 
a value close to 0, and subsequently along the iteration process is 
being changed to achieve a value 1 for a synchronized network. 
For a fully synchronized network weights’ vectors overlap equals 
1 because the angle between them is equal to 0. Further analysis is 
based on the connected weights’ vectors of all hidden layer 
neurons. It consists of KN integers ranging from -L to L. 
Knowing both partner’s A and B network weights’ vectors, one 
can measure a total mutual overlap over entire network 
analogously to the measurements of mutual overlap for each 
single neuron: 
 

  (7) 
 

Another scheme to determine the compatibility of weights’ 
vectors is to calculate the distance between them using the 
Euclidean metric. Such distance between two vectors of weights 
for both networks is given by the well-known formula: 
 

  (8) 
 

In this case, the index k indicates the value of the specific 
weight from the networks’ connected weight vectors. Relationship 

of the cosine of the angle between the weights’ vectors and the 
distance between them is given by the cosine theorem holding for 
arbitrary unitary spaces: 

 

 (9) 
 
An important difference between the cosine of the angle 

between two vectors, and the distance between them is the range, 
which includes the value of both functions and changes these 
values during synchronization of the networks. Cosines of the 
initial weights’ vectors take values close to 0 and keep growing to 
ultimately approach the value 1 for fully synchronized networks. 
Euclidean distance at the beginning of the synchronization takes 
large values depending on the size of the network and the range, 
which includes the weight, while for the synchronized network 
such distance is set to 0.  

As an example we consider the two TPM networks with the 
selected topology of the type 3-101-3. The first one synchronizes 
within 348 cycles. This number coincides with the average 
synchronization cycle number computed for the nets of the 
analogous size and simulated within 5000 synchronizations. The 
second net synchronizes in 620 cycles and this time belongs to the 
middle class of histogram presented above. Fig. 5 presents cosine 
and Euclidean distance values for first TPM, and Fig. 6 the same 
values for the second TPM. Given a large disproportion occurred 
within the ranges between the corresponding cosine values and 
Euclidean values Figs. 5 and 6 contain two ordinates i.e. two  
Y-axes. 

 

 
 

Fig. 5. Euclidean distance and cosine of the first TPM 
 

For the comparison between these two values it is therefore 
necessary to rescale them to a common set of values. For this 
purpose, a reversal and normalization distance is applied 
according to the formula: 
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Fig. 7 and Fig. 8 show comparison of cosine and normalized 

and reversed Euclidean distance for the same synchronization as it 
is shown earlier in Fig. 5 and Fig. 6. 
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Fig. 8. Normalized and Reversed Euclidean distance and cosine 
for the second TPM 

It is visible that both values are strongly correlated. 
The obtained distances for analyzed networks are highly 

correlated with the respective values of cosine. As demonstrated 
by experimental means, the correlation coefficient of mutual 
overlap and Euclidean distance for the network in Table 1 exceeds 
0.95. This means that the proposed method for evaluating the 
degree of synchronization is as effective as the methods used so 
far. In addition normalized distances tend to be more correlated 
with the frequency occurrence of the network consistent results. 

The practical application of examined phenomenon appearing 
during TPM network synchronization for the construction key 
exchange protocol requires that the network weights are kept in 
secret. Communication parties cannot therefore simply use the 
methods described above. The only knowledge for partners 
exchanging key is the result of the network other part for the common 
input vector. Based on the available results of both networks, partners 
can set the frequency with which both networks have the same 
results. Using these frequencies, one can reason on a compatibility of 
network weights’ vectors. The method presented below allows the 
calculation of the frequency of equal networks results in s previous 
steps, where s is a given natural number. Created sequence illustrates 
the dynamics of the network synchronization. 

Let the (an) be a sequence, and an=1  if n
A= n

B  and an=0  if 
n
A  n

B. Index n indicates the number of learning step and 
n=1,2,…,tsynch. Let sequence (bn)  be defined as an average of s 
elements from (an) with indices n,n-1,…,n-s+1. If index n is less 
than number of elements to analyze s, then in sequence (an)  there 
aren’t s elements before n-th element, and it has to be calculated 
as an average of all available elements form the first one. This 
sequence is given by formula: 
 

 (11) 
 
where l=min(n,s). 

 
The analysis conducted herein indicates, that for the majority of 

the analyzed networks, a significant linear relationships hold 
between the frequencies of common TPM’s outputs and the mutual 
overlap, as well as between these frequencies and Euclidean 
distance. However, the second correlation is usually stronger. For 
networks synchronizing in a longer time the correlation is little 
lower and suggests a moderate correlation. This means, that the 
communication partners can infer about the compatibility of 
weights’ vectors by analyzing the frequency of consistent results, 
without knowing the other parties weights’ vector. 

Figs. 9 and 10 show normalized and reversed Euclidean 
distance and frequencies for s=75 and s=125. First diagram shows 
frequencies divided by l, as presented in formula above. The sum 
of consistent results for both nets, under fixed preceding steps is 
divided by the quantity of accessible results. The latter does not 
yield satisfactory adjustment fitting at the beginning of the 
synchronization process. 

A simple inspection shows, that although the first parts of the 
generated plots above have different values, they can still be 
much better adjusted upon dividing computed frequencies by s 
instead of dividing them by l. Once the division by 1 is applied, 
the number of consistent results of both networks obtained in the 
previous steps is divided by 1. It can turn out that the occurrence 
of the few consistent results of both networks at the initial phase 
of synchronization may yield high frequencies thanks to the small 
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2. Results and discussion 
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Fig. 10. Normalized and Reversed Euclidean distance and 
frequencies divided by l for the second TPM 

 

 
 
Fig. 11. Normalized and Reversed Euclidean distance and 
frequencies divided by s for the first TPM 
 

 
 
Fig. 12. Normalized and Reversed Euclidean distance and 
frequencies divided by s for the second TPM 

Clearly, the computed herein frequencies of the consistent 
exchange results for both nets correspond very strongly to the 
weights’ distance. 

In our testing, 5000 synchronizations are carried out for the 
network with the structure 3-101-3. The respective 
synchronization times are within the range from 142 to 1095 
cycles with the average 348 cycles. Table 1 contains a summary 
of correlation coefficients for the analyzed network. It illustrates 
networks with synchronization time between 150 and 500 cycles 
and the step 50 cycles. For each network it specifies a) the 
correlations between distance and the cosine of weight vector, b) 
correlation coefficients of sampled frequencies from 25 to 225 
with step 50 and the Euclidean distance and c) correlation 
coefficients this frequency and cosine, respectively. 

The new approach proposed in this paper may serve as a non-
standard and very safe tool to secure sensitive input/output 
technical data. In particular this is important for the functioning of 
new unique and innovative technologies (see e.g. [18] or [21]). 
 
 
3. Conclusions 
 

Histogram describing the frequencies of network 
synchronization in a specified number of learning cycles indicates 
that usually networks synchronize relatively quickly. There are, 
unfortunately, probabilities for which the network will need to 
synchronize with the large number of cycles well above the 
experimentally computed average synchronization time. In the 
worst analyzed case, long synchronization takes over 2.7 times 
more cycles then the respective average synchronization. Without 
knowing the weights’ vector it would be difficult to categorize 
whether the current synchronization falls in the fast group or 
whether it will last longer. Our research indicates, that the 
frequencies of equal TMP’s output are strongly correlated with 
the weights’ vectors mutual overlap and with the vectors 
computed with the aid of Euclidean distance. Thus, the analysis of 
the frequencies presented here can be exploited by both 
communication partners, to assess the networks synchronization 
level. Consequently, each investigated synchronization process in 
question can be classified to either the long or the short one (or 
alternatively can be qualified into one of the predefined time 
duration zones). 
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value of the divisor 1. The latter implies, that despite insignificant 
consistency of weights’ vectors the computed frequency of 
consistent results is still high. To handle this inconvenience, so 
that the frequencies’ values are better fitted to the consistency of 
the respective weights’ vectors the above mentioned divisor 1 is 
increased to s. The number s is determined on the basis of the 
quantity of the so-far analyzed steps. For the initial 
synchronization cycles we observed the cases when the number of 
all steps is smaller than s. In such a case the analysis of all 1 
cycles with 1<s is performed and consequently in such eventuality 
the quantity of consistent results is divided by 1. A slight 
modification of this approach is also here accomplished. Namely, 
irrespectively from the number of accessible cycles the quantity 
of consistent results is always divided by an a priori specified 
length s of the cycles. This procedure is still conducted if the 
corresponding summation runs over only one index. The 
respective frequencies derived with this scheme are much better 
fitted to the real distance between the weight’s vectors. 

The alternative sequence is given by formula: 
 

 (12) 
 
where l=min(n,s).  

Fig. 11 and Fig. 12 shows these frequencies and Euclidean 
distance. 
 
 

 
 
Fig. 9. Normalized and Reversed Euclidean distance and 
frequencies divided by l for the first TPM 

 
Table 1. 
Results of analysis 

Synchronization time  Correlation dist and cos FR 25 FR 75 FR 125 FR 175 FR 225 

150 
 0.952  

corr dist fr  0.933 0.948 0.919 0.913 0.913 
corr cos fr 0.943 0.930 0.937 0.946 0.946 

200 
 0.970  

corr dist fr  0.890 0.822 0.755 0.747 0.747 
corr cos fr 0.795 0.680 0.613 0.618 0.621 

250 
 0.962  

corr dist fr  0.891 0.934 0.934 0.934 0.935 
corr cos fr 0.813 0.853 0.858 0.864 0.890 

300 
 0.958  

corr dist fr  0.841 0.833 0.801 0.782 0.791 
corr cos fr 0.712 0.684 0.651 0.641 0.660 

350 
 0.967  

corr dist fr  0.808 0.831 0.771 0.698 0.617 
corr cos fr 0.700 0.688 0.609 0.521 0.432 

400 
 0.952  

corr dist fr  0.737 0.783 0.739 0.754 0.750 
corr cos fr 0.593 0.637 0.628 0.675 0.661 

450 
 0.963  

corr dist fr  0.701 0.656 0.555 0.463 0.368 
corr cos fr 0.519 0.446 0.327 0.224 0.123 

500 
 0.968  

corr dist fr  0.692 0.702 0.679 0.645 0.623 
corr cos fr 0.579 0.566 0.532 0.493 0.473 

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


97

Analysis and modelling

The evaluation of the TPM synchronization on the basis of their outputs

 
 
Fig. 10. Normalized and Reversed Euclidean distance and 
frequencies divided by l for the second TPM 

 

 
 
Fig. 11. Normalized and Reversed Euclidean distance and 
frequencies divided by s for the first TPM 
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whether it will last longer. Our research indicates, that the 
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