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AbstrAct
Purpose: The article is to show selected results of research in a field of new type of cast spatial composite 
reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial 
composite reinforcement.
Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures 
called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell 
were shown. The selection of internal topology of skeleton casting was based on numerical simulations of stress 
distribution.
Findings: The possibility of manufacturing of geometrically complex skeleton castings without use of advanced 
techniques was confirmed.
Research limitations/implications: With use of computer tomography, analysis of deformation mechanisms 
was carried out. Different levels of impact energies were used
Practical implications: Spatial skeleton casting with octahedron elementary cell confirmed their usefulness as 
impact energy absorbers.
Originality/value: The overall aim of presented research was to determine the mechanisms of skeleton castings 
deformation processes.  Thanks to CT data next step will be to create accurate numerical model for further 
simulation and design optimization.
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1. Introduction 
 

Lattice truss structures, metal foams and honeycombs offer 
a number of practical advantages. If the relative density is low, they 
can be readily flexed into curved panels and then attached to curved 
face sheets. From economics and ecology point of view they should 
allow lowering the weight of constructions. This makes possible to 
save resources and sometimes energy used in manufacturing 
processes. Lower weight in aerospace and automotive industry also 
connects with lower energy consumption. Most challenging, while 

designing lightweight material, is to achieve good proportion 
between strength/stiffness and weight [1,2]. Periodic truss structures 
(Fig. 1) show also features like good kinetic energy absorption, 
important for use in ballistic impact protection, acoustic damping or 
shock absorption. In several of these applications, the structures are 
loaded to their maximum strength [3–6]. Fleck and Deshpande [3] 
developed an approach to analyse the dynamic response of 
a sandwich beam. The structure of the core can consist of different 
topologies (Fig. 2), such as pyramidal, diamond cell, corrugated, 
hexagonal honeycomb and square honeycomb, depending on the 
types of loading anticipated. The dynamic response of monolithic 
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3.  Description of the research

4. Results 
 

In Fig. 8 experimental force - displacement and velocity - 
time curves were presented. At the start, the load increased with 
displacement nearly linearly up to an initial peak load.  
 

 
 
Fig. 8. (a) Experimental force - displacement curves  
(b) Experimental velocity - time curves  
 

This represents deformation of face sheets without penetration 
due to stretching. In each trial after initial peak load, from 2.5 mm 
to 7.5 mm of displacement, the near plateau can be observed. 
After the initial peak, failure occurred due to the face sheet 
fracture and the load decreased with the displacement. The 
decrease in the load continued up to the point of complete fracture 
of the face sheet. After that it is clear from Fig. 8a that as the 
displacement increases, the resistance increases correspondingly. 
It is due to the next phase of the deformation - densification of the 
whole structure in connection with internal friction of the 
components. Pores compression in ceramic matrix and destruction 
of the interconnected struts are responsible for impact energy 
dissipation in whole volume of the composite. Destruction of 
internal struts was initiated by stress concentration in near nodes 
areas. Fractures appear in same locations in second and third 
specimen. Only the front face sheet was brittle destructed even in 
trial with highest energy (Fig. 9) [29]. It can be observed slight 
plastic deformation of other sheets. Energy of the shoots was 
dissipated in whole volume of composite, not only in axis parallel 
to the shoot.  

 
 
Fig. 9. Computer topography scans after impact: a) 499 J,  
b) 2181 J, c) 2813 J 
 
 

5. Summary 
 

Skeleton castings filled with open pores ceramics was tested 
under impact loading, with energies from about 500 J to about 
2800 J and velocities accordingly 7.2 m/s to 17.1 m/s. Compared 
to the previous research[30,31], castings filled with ceramics 
matrix absorbed almost all the impact energy and proved to be 
good value in energy absorbing application. It was found that the 
energy absorption capacity depends on properties of filling 
material. Based on conducted research next step will be to make 
numerical model. Simulations are crucial for further developing 
of skeleton casting conception. Its mechanical behaviour depends 
on base material, geometrical features such as internal topology 
and face sheet thickness or filling material properties. All this 
factors will be taken into account in further design optimization 
and tailoring mechanical properties to final application of skeleton 
castings. 
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4. Results 
 

In Fig. 8 experimental force - displacement and velocity - 
time curves were presented. At the start, the load increased with 
displacement nearly linearly up to an initial peak load.  
 

 
 
Fig. 8. (a) Experimental force - displacement curves  
(b) Experimental velocity - time curves  
 

This represents deformation of face sheets without penetration 
due to stretching. In each trial after initial peak load, from 2.5 mm 
to 7.5 mm of displacement, the near plateau can be observed. 
After the initial peak, failure occurred due to the face sheet 
fracture and the load decreased with the displacement. The 
decrease in the load continued up to the point of complete fracture 
of the face sheet. After that it is clear from Fig. 8a that as the 
displacement increases, the resistance increases correspondingly. 
It is due to the next phase of the deformation - densification of the 
whole structure in connection with internal friction of the 
components. Pores compression in ceramic matrix and destruction 
of the interconnected struts are responsible for impact energy 
dissipation in whole volume of the composite. Destruction of 
internal struts was initiated by stress concentration in near nodes 
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dissipated in whole volume of composite, not only in axis parallel 
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Fig. 9. Computer topography scans after impact: a) 499 J,  
b) 2181 J, c) 2813 J 
 
 

5. Summary 
 

Skeleton castings filled with open pores ceramics was tested 
under impact loading, with energies from about 500 J to about 
2800 J and velocities accordingly 7.2 m/s to 17.1 m/s. Compared 
to the previous research[30,31], castings filled with ceramics 
matrix absorbed almost all the impact energy and proved to be 
good value in energy absorbing application. It was found that the 
energy absorption capacity depends on properties of filling 
material. Based on conducted research next step will be to make 
numerical model. Simulations are crucial for further developing 
of skeleton casting conception. Its mechanical behaviour depends 
on base material, geometrical features such as internal topology 
and face sheet thickness or filling material properties. All this 
factors will be taken into account in further design optimization 
and tailoring mechanical properties to final application of skeleton 
castings. 

5.  conclusions

4.  results

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Short paper98 READING DIRECT: www.journalamme.org

Journal of Achievements in Materials and Manufacturing Engineering Volume 58 Issue 2 June 2013

 

References 
 
[1] T. George, V.S. Deshpande, H.N.G. Wadley, Mechanical 

response of carbon fiber composite sandwich panels with 
pyramidal truss cores, Composites Part A, Applied Science 
and Manufacturing 47 (2013) 31-40. 

[2] G. Kooistra, Compressive behaviour of age hardenable 
tetrahedral lattice truss structures made from aluminium, 
Acta Materialia 52 (2004) 4229-4237. 

[3] V. Deshpande, N. Fleck, Collapse of truss core sandwich 
beams in 3-point bending, International Journal of Solids 
and Structures 38 (2001) 6275-6305. 

[4] J. Tian, T. Kim, T.J. Lu, H.P. Hodson, D.T. Queheillalt, 
D.J. Sypeck, H.N.G. Wadley, The effects of topology upon 
fluid-flow and heat-transfer within cellular copper 
structures, International Journal of Heat and Mass Transfer 
47 (2004) 3171-3186. 

[5] S. Jang H.J. Choi, Integrated design of blast resistance 
panels and materials, Composite Structures, 2013. 

[6] W. Hufenbach, H. Ullrich, M. Gude, A. Czulak, P. Malczyk, 
V. Geske, Manufacture studies and impact behaviour of 
light metal matrix composites reinforced by steel wires, 
Archives of Civil and Mechanical Engineering 12 (2012) 
265-272. 

[7] Z. Xue, Preliminary assessment of sandwich plates subject 
to blast loads, International Journal of Mechanical Sciences 
45 (2003) 687-705. 

[8] Y.W. Lim, H.J. Choi, S. Idapalapati, Design of Alporas 
aluminum alloy foam cored hybrid sandwich plates using 
Kriging optimization, Composite Structures 96 (2013) 17-28. 

[9] W. Hufenbach, M. Gude, L. Kroll, Design of multistable 
composites for application in adaptive structures, 
Composites Science and Technology 62 (2002) 2201-2207. 

[10] L.J. Gibson, M.F. Ashby, G.S. Schajer, C.I. Robertson, 
The Mechanics of two-dimensional cellular materials, 
Proceedings of the Royal Society A, Mathematical, Physical 
and Engineering Sciences 382 (1982) 25-42. 

[11] K.P. Dharmasena, H.N.G. Wadley, Z. Xue, J.W. Hutchinson, 
Mechanical response of metallic honeycomb sandwich panel 
structures to high-intensity dynamic loading, International 
Journal of Impact Engineering 35 (2008) 1063-1074. 

[12] I. Németh, K. Kovács, I. Reimerdes, crashworthiness study 
of railway vehicles - developing of crash elements,  
Procedings of 8th Mini Conference on “Vehicle System 
Dynamics, Identification and Anomalies”, 2002, 291-304. 

[13] L. Valdevit, Structurally optimized sandwich panels with 
prismatic cores, International Journal of Solids and 
Structures 41 (2004) 5105-5124. 

[14] M. Cholewa, S. Tenerowicz, J. Sucho , Spatial bimetallic 
castings manufactured from iron alloys, Archives of 
Foundry Engineering 7 (2007) 33-38. 

[15] M. Cholewa, M. Dziuba, Design of core geometry of 
aluminium skeleton casting with open pores, Archives of 
Mechanical Technology and Automation 26 2006 15-23  
(in Polish). 

[16] M. Cholewa, M. Dziuba-Ka u a, Structural analysis of 
aluminium skeleton castings, Archives of Foundry 
Engineering 8 (2008) 29-36. 

[17] M. Cholewa, T. Szuter, Geometrical and mechanical 
analysis of 3D casted skeleton structure, Archives of 
Foundry Engineering, 10 (2010) 23-26. 

[18] M. Cholewa, T. Szuter, Structure of AlSi skeleton castings, 
Archives of Foundry Engineering 12 (2012) 147-152. 

[19] M. Cholewa, T. Wróbel, S. Tenerowicz, T. Szuter, Difussion 
phenomena between alloy steel and gray cast iron layered 
bimetallic casting, Archives of Metallurgy and Materials 
55 (2010) 771-777. 

[20] M. Cholewa, T. Szuter, M. Dziuba, Basic properties of 3D 
cast skeleton structures, Archives of Materials Science and 
Engineering 52 (2011) 101-111. 

[21] N.A. Meisel, C.B. Williams, A. Druschitz, Lightweight 
metal cellular structures via indirect 3D printing and casting, 
Proceedings of the International Solid Freeform Fabrication 
Symposium, 2012 162-176. 

[22] D. Bartocha, J. Kilarski, J. Sucho , C. Baron, J. Szajnar,  
K. Janerka, W. Sebzda, Metallurgical and chemical quality 
of low-alloy constructional cast steel vs mechanical 
properties, Proceedings of the 21th International Conference 
on Metallurgy and Materials, Brno, 2012, 202-209. 

[23] D. Bartocha, W. Sebzda, J. Sucho , C. Baron, 
The evaluation of cast steel filtration efficiency, Proceedings 
of the 21th International Conference on Metallurgy and 
Materials, Brno, 2012. 

[24] M. Cholewa, J. Gawro ski, Z. Ignaszak, Technological 
aspects of particle-reinforced composites production, 
Materials and Design 18 (1998) 401-405. 

[25] J. Jezierski, K. Janerka, Waste utilization in foundries and 
metallurgical plants, Polish Journal of Environmental 
Studies 20 (2011) 101-105. 

[26] M. Cholewa, T. Szuter, Heat-insulating moulding sand with 
the glycol addition, Archives of Foundry Engineering 
11 (2011) 61-64. 

[27] M. Cholewa, Simulation of solidification process for 
composite micro-region with incomplete wetting of 
reinforcing particle, Journal of Materials Processing 
Technology 164 (2005) 1181-1184. 

[28] M. Cholewa, Simulation of composite microregions 
solidification process, Journal of Materials Processing 
Technology 164 (2005) 1175-1180. 

[29] W. Hufenbach, R. Böhm, M. Gude, M. Berthel, a. Hornig, 
S. Ru evskis, M. Andrich, A test device for damage 
characterisation of composites based on in situ computed 
tomography, Composites Science and Technology 
72/12 (2012) 1361-1367. 

[30] T. Szuter, M. Cholewa, Skeleton castings as a new type of 
spatial composite reinforcement with specific mechanical 
properties, Composites Theory and Practice 2 (2012) 121-125. 

[31] M. Cholewa, T. Szuter, T. Wróbel, M. Kondracki, The 
skeleton castings as a new type of cast lattice structures, 
Journal of Achievements in Materials and Manufacturing 
Engineering 54 (2012) 250-259. 

 

references

http://www.readingdirect.org
http://www.readingdirect.org

