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Abstract

Purpose: The purpose of the article was to broaden the knowledge about the behavior of Fibonacci superlattices 
as filters electromagnetic waves.
Design/methodology/approach: Simulations of multi-layer systems is usually carried out by using two 
complementary methods. The first, matrix method which allows the study of the properties of structures using 
transmission maps and the second method used is the Finite-Difference Time Domain (FDTD) algorithm allows 
on the study of electromagnetic wave propagation in the structure.
Findings: It can be seen that the lighting of the filter with monochromatic light in the wavelength range of the 
band gap filter at the output causes propagation of low intensity in the range other than the wavelength of the 
incident beam.
Research limitations/implications: The simulation was not considered the impact of losses in the material.
Practical implications: Present clear differences depending on the polarization allow the use of superlattices as 
polarizers for specific ranges of wavelengths and angles of incidence.
Originality/value: Fibonacci superlattices have been pre-tested in. The purpose of the article was to broaden 
the knowledge about the behavior of these structures as filters electromagnetic waves with a wavelength range 
from the near infrared, the effect of the material surrounding the transmission and increasing knowledge of the 
formation of band gaps.
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1. Introduction 
 
Quasiperiodic multilayer systems because of their unique 

properties are used as filters of electromagnetic radiation and as 

photonic materials are intensively studied in many research 
centers all over the world [1-5]. There exists a phenomenon of the 
photonic band gap, and therefore electromagnetic waves of 
certain wavelengths do not propagate in the materials. The size 
and the occurrence of band gaps is strongly correlated with the 
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type of materials used to build the structure, the structure of 
arrangement layers, their thickness and the type of environment in 
which the multilayer is to operate.  

Well-developed technique for producing multilayer systems 
allows to obtain material having selected physical properties [6-32]. 
The use of superlattices as a filter of electromagnetic waves in 
optical multiplexers creates the need for filter design with specific 
areas of the propagation of electromagnetic waves and band gaps. 
In order to reduce the cost of research shall be carried out 
preliminary simulations of these structures. Possibly accurate and 
comprehensive analysis of various types of structures allows for  
a better understanding of the phenomena occurring in the 
material, and thus the design of multilayers with a much better 
performance characteristics. 

Simulations of multi-layer systems is usually carried out by using 
two complementary methods. The first, matrix method [2, 42], allows 
the study of the properties of structures using transmission maps. 
They allow you to know the structure of the propagation of 
electromagnetic waves by multilayer system for a given 
wavelength range and any angle of incidence of the wave on the 
surface of the structure. Research can be carried out for any 
materials with known parameters. Also included are modern 
composite materials, known as metamaterials, characterized by  
a negative relative permittivity and negative magnetic permeability, 
and what goes with it negative refractive index [33-44].  
This method also allows for testing of materials highly dispersive 
and observe the phenomenon of electromagnetic wave tunneling 
in quasi one-dimensional multilayer structure. The second method 
used is the Finite-Difference Time Domain (FDTD) algorithm [45] 
allows on the study of electromagnetic wave propagation in the 
structure built of dielectric materials. The use of Fast Fourier 
Transform (FFT) allows you to generate a wavelength 
characteristics, which you can explore the formation and 
occurrence of band gaps in periodic and aperiodic structures. 
FDTD algorithm allows the observation of electromagnetic wave 
propagation in time, and therefore can be observed phenomena 
occurring inside the multilayer material before transmission 
through the structure to stabilize. 

The Matrix Method transmission is determined by: 
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where out is the angle at which EMW leaves multilayers, in is 
angle of incidence of the electromagnetic wave in relation to the 
normal to the structure, nin, nout are the refractive indexes of the 
environment surrounding the multilayer system respectively 
before and after the structure, 11 - the first diagonal element of 
the  characteristic matrix superlattice described by the relation: 
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where nj, dj is respectively refractive index and thickness of the 
layer j, j - determined from Snell law angle of incidence of 
electromagnetic wave in the layer j,  - the wavelength of incidence 
wave. The parameters t and s are the Fresnel coefficients which 
determine the behavior of the electromagnetic wave at the border 
centers. They depend on the type of polarization and for P-type 
polarization are:  
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while for S type of polarization they take the form: 
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Use of the algorithm Finite-Difference Time Domain is to 

change the partial derivatives of the Maxwell equations for the 
differences relevant to dimension the problem under 
consideration. In the present case quasi one-dimensional general 
structure of Maxwell's equations take the form: 
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where E is the electric field intensity, H magnetic field intensity 
and D is the electric induction vector. 0, 0 are electric and 
magnetic permeability in a vacuum, and r is a relative 
permittivity of the medium. After using the equations of the 
normalization. 
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You can transform the system of equations (5) to the quasi 

one-dimensional system of equations stored in the formalism of 
the FDTD method. 
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In the system of equations (7) I is an auxiliary matrix, n is  
a step in the one-dimensional k-space, and x, t describe 
respectively coordinates discretization of the position and time.  
In order to ensure the stability of the simulation it is necessary to 
link the maximum time step with the space discretization factor 
and speed of light in vacuum c by taking into account the Courant 
condition.  
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The simulation used a soft source of electromagnetic waves 

and Absorbing Boundary Conditions (ABC) in order to provide 
better quality of results. By using Fast Fourier Transform (FFT), 
the distribution of wavelength propagating in the simulation space 
was made. 

The paper presents the occurrence of band gaps and 
transmission properties of the Fibonacci superlattice [46-55].  
In order to construct a binary structure describing the spatial 
distribution of layers, use the following recursive formula:  

 

F
L

F
L

F
L

F

F

A

B

11

1

0

 (8) 

 
Where L is the number of generations of the superlattice.  

The first few generations of the layers in the structure shown  
in Table 1. 

 
Table 1. 
Structure of the layers in the Fibonacci superlattice built of 
materials A and B 

Generation 
(number of 

layers) 
Structure of the layers 

0 (1) B 
1 (1) A 
2 (2) AB 
3 (3) ABA 
4 (5) ABAAB 
5 (8) ABAABABA 

6 (13) ABAABABAABAAB 
7 (21) ABAABABAABAABABAABABA 

8 (34) ABAABABAABAABABAABABAABAABABAA
BAAB 

9 (55) ABAABABAABAABABAABABAABAABABAA
BAABABAABABAABAABABAABABA 

10 (89) 
ABAABABAABAABABAABABAABAABABAA
BAABABAABABAABAABABAABABAABAAB
ABAABAABABAABABAABAABABAABAAB 

2. Research
 

In this study the behavior of the electromagnetic wave 
propagating in the Fibonacci superlattice. Analysed multilayer 
consisted of lossless and non-dispersive materials. A material was 
NaCl nA = 1.544 or its metamaterial equivalent with a refractive 
index nA = - 1.544, while material B was GaAs with nB = 3.4 [2]. 
The effect of the refractive index of the ambient material of the 
multilayer system (nin, nout – Figs. 1-3). Then examined the 
Fibonacci superlattice transmission in the wavelength range of near-
infrared with polarization P and S (Figs. 4-7). In order to investigate 
the characteristics of wavelength propagating in the superlattice was 
determined the transmission of electromagnetic wave (Fig. 8) were 
incidence angle in was equal to 0. Then, using the FDTD 
algorithm, was examined the propagation of electromagnetic waves 
in Fibonacci superlattice at a time. The high-band transmission for  
 = 450 nm (Figs. 9-11) and a band gap for  = 520 nm (Figs. 12-

14). Simulation parameters are given in the descriptions of figures. 
 

 
 

Fig. 1. Transmission map for nin = nout = 1, dA = dB = 280 nm,  
nA = - 1.544, nB = 3.4, L = 5 and polarization type S 

 

 
 

Fig. 2. Transmission map for nin = nout = 2, dA = dB = 280 nm,  
nA = - 1.544, nB = 3.4, L = 5 and polarization type S 
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incidence angle in was equal to 0. Then, using the FDTD 
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 = 450 nm (Figs. 9-11) and a band gap for  = 520 nm (Figs. 12-

14). Simulation parameters are given in the descriptions of figures. 
 

 
 

Fig. 1. Transmission map for nin = nout = 1, dA = dB = 280 nm,  
nA = - 1.544, nB = 3.4, L = 5 and polarization type S 

 

 
 

Fig. 2. Transmission map for nin = nout = 2, dA = dB = 280 nm,  
nA = - 1.544, nB = 3.4, L = 5 and polarization type S 
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Fig. 3. Transmission map for nin = nout = 3, dA = dB = 280 nm,  
nA = - 1.544, nB = 3.4, L = 5 and polarization type S 

 

 
 

Fig. 4. Transmission map for dA = dB = 350 nm, nA = 1.544,  
nB = 3.4, L = 5 and polarization type P 

 

 
 

Fig. 5. Transmission map for dA = dB = 350 nm, nA = 1.544,  
nB = 3.4, L = 5 and polarization type S 

 
 

Fig. 6. Transmission map for dA = dB = 350 nm, nA = - 1.544,  
nB = 3.4, L = 5 and polarization type P 

 

 
 

Fig. 7. Transmission map for dA = dB = 350 nm, nA = - 1.544,  
nB = 3.4, L = 5 and polarization type S 
 

 
 

Fig. 8. Transmission for Fibonacci superlattice where nA = 1.544, 
nB = 3.4, dA = dB = 200 nm, in = 0, L = 7 and polarization type P 

 

 
 

Fig. 9. Wavelength characteristic for  = 450 nm after T = 1000 
timesteps 

 

 
 

Fig. 10. Wavelength characteristic for  = 450 nm after T = 3000 
timesteps 

 

 
 

Fig. 11. Wavelength characteristic for  = 450 nm after T = 8000 
timesteps 

 
 

Fig. 12. Wavelength characteristic for  = 520 nm after T = 1000 
timesteps 

 

 
 

Fig. 13. Wavelength characteristic for  = 520 nm after T = 3000 
timesteps 

 

 
 

Fig. 14. Wavelength characteristic  = 520 nm after T = 8000 for 
timesteps 
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Fig. 9. Wavelength characteristic for  = 450 nm after T = 1000 
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Fig. 10. Wavelength characteristic for  = 450 nm after T = 3000 
timesteps 

 

 
 

Fig. 11. Wavelength characteristic for  = 450 nm after T = 8000 
timesteps 

 
 

Fig. 12. Wavelength characteristic for  = 520 nm after T = 1000 
timesteps 

 

 
 

Fig. 13. Wavelength characteristic for  = 520 nm after T = 3000 
timesteps 

 

 
 

Fig. 14. Wavelength characteristic  = 520 nm after T = 8000 for 
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3. Conclusions 
 

Fibonacci superlattices have been pre-tested in [42].  
The purpose of the article was to broaden the knowledge about 
the behavior of these structures as filters electromagnetic waves 
with a wavelength range from the near infrared, the effect of the 
material surrounding the transmission and increasing knowledge 
of the formation of band gaps. Part of the results of the study are 
presented in Figures 1-12. 

In analysing the impact of the material surrounding the 
transmission of the Fibonacci superlattice structure observed 
transmission shift toward smaller angles and the presence above the 
critical angle a narrow bands of the tunneled electromagnetic wave. 

In the near infrared transmission maps are typical and similar 
to binary systems and Thue-Morse superlattices. Present clear 
differences depending on the polarization allow the use of 
superlattices as polarizers for specific ranges of wavelengths and 
angles of incidence. 

Research propagation and distribution of wavelengths using the 
FDTD algorithm (Figures 9-14) allow you to explore the behavior 
of the wave in terms of full transmission and the band gaps. 

It can be seen that the lighting of the filter with 
monochromatic light in the wavelength range of the band gap 
filter at the output causes propagation of low intensity in the range 
other than the wavelength of the incident beam. This phenomenon 
can be explained by the formation of standing waves and their 
interference with the beam inside the structure. 
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Properties

3. Conclusions 
 

Fibonacci superlattices have been pre-tested in [42].  
The purpose of the article was to broaden the knowledge about 
the behavior of these structures as filters electromagnetic waves 
with a wavelength range from the near infrared, the effect of the 
material surrounding the transmission and increasing knowledge 
of the formation of band gaps. Part of the results of the study are 
presented in Figures 1-12. 

In analysing the impact of the material surrounding the 
transmission of the Fibonacci superlattice structure observed 
transmission shift toward smaller angles and the presence above the 
critical angle a narrow bands of the tunneled electromagnetic wave. 

In the near infrared transmission maps are typical and similar 
to binary systems and Thue-Morse superlattices. Present clear 
differences depending on the polarization allow the use of 
superlattices as polarizers for specific ranges of wavelengths and 
angles of incidence. 

Research propagation and distribution of wavelengths using the 
FDTD algorithm (Figures 9-14) allow you to explore the behavior 
of the wave in terms of full transmission and the band gaps. 

It can be seen that the lighting of the filter with 
monochromatic light in the wavelength range of the band gap 
filter at the output causes propagation of low intensity in the range 
other than the wavelength of the incident beam. This phenomenon 
can be explained by the formation of standing waves and their 
interference with the beam inside the structure. 
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