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1. Introduction 

 
Due to increasing popularity of composite materials in 

industrial applications new computational strategies was 
developed. Very important and practical issue is estimation of 
effective properties of heterogeneous materials. Homogenization 
of composite’s properties can be achieved by analysis of the RVE 
(Representative Volume Element). RVE is a statistical 

representation of material properties. It should contain enough 
information to describe behaviour of considered composite [1]. At 
macro scale, each material point is interpreted as the centre of 
RVE. Application of homogenization procedure is essential to 
find the macro constitutive response of RVE that represents the 
microstructure. Very popular approach is based on direct finite 
element [2,3] or boundary element [1,4] analysis of  RVE. 
Another approach, on which this paper focuses, is application of 
mean filed homogenization [5,6]. To test an influence of 
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microstructure properties on macro behaviour of machine’s parts 
or structures multi-scale analysis is essential. In the present paper 
two scale analysis is presented. The first, microscopic scale, is 
connected with the composite heterogeneous microstructure. The 
second scale is the macroscopic one where the whole considered body 
can be seen as homogenous. Those complicated procedure is 
conducted in the numerical way. Till now it required preparing an 
own code in most cases, but lately some commercial codes are also 
able to conduct this procedure. In this research composite’s effective 
properties are estimated by mean filed homogenization procedure 
implemented in the DIGIMAT software [7]. Then structural analysis 
is carried out by finite element method. In this paper conceptions of 
strong and weak multi-scale strategies are presented. 
 
 

2. Numerical homogenization 
 
 
2.1 Mean field homogenization 
 

Homogenization techniques, as stated before, are often based 
on direct finite element analysis of RVE at micro scale using 
macroscopic values as the boundary conditions. Then computed 
results are returned to macro scale by averaging techniques. This 
approach is very accurate and gives detailed micro fields. 
However, especially for nonlinear problems, it is computationally 
very expensive. In addition, the creation of discrete model of RVE 
is also necessary. Preparation of discrete representation of 
composite’s microstructure can lead to additional difficulties. 
Another method is mean field homogenization (MFH). MFH is 
based on analytical models and gives only approximations of the 
volume averages of stresses and strains, both at the macro level 
and in each micro phase [7]. The main advantage of MFH method 
is computational efficiency. Generally, homogenization procedure 
is divided into three steps (Fig. 1). In the first step given 
macroscopic strain tensor is localised in each phase of the 
composite material. The second step is connected with application 
of constitutive laws of each phase. As a result per phase stress 
tensors are computed. In the last step phases stress tensors are 
averaged and macroscopic stress tensor  is obtained. 

 

 
Fig. 1. Homogenization scheme 

 
Let us take into consideration two-phase composites in which 

inclusions that extend on domain 1 and have volume V1 are 
reinforcing the matrix which extends on domain 0 and has  
a volume V0. Volume fraction of matrix and inclusion can be 
expressed as: 
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where V is the volume of RVE. 
 

The average quantity over a RVE is defined by: 
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where integration is carried out with respect to micro coordinates 
and ( , )f x x is the micro field inside the RVE.  
In case of two phase composites volume average can be expressed 
as: 
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Fig. 2. Single-inclusion problem description 

2.	Numerical homogenization

 

In the most relevant mean field homogenization models 
fundamental role plays the Eshelby’s solution [8]. Eshelby’s 
solution allows solving the single-inclusion problem. Considering 
single-inclusion problem, an infinite body is subjected to linear 
displacements on its boundary corresponding to a uniform far- 
field strain . The body is made of an ellipsoidal inclusion (I) of 
modulus C1 which is embedded in an infinite matrix of modulus 
C0 (Fig. 2).  

Using Eshelby’s solution, it can be found that strain inside 
inclusion is uniform and related to the remote strain: 
 

0 1( )= , , : ,   ( )x H I C C E I  (9) 
 
where H is the single-inclusion strain concentration tensor defined 
as follows: 
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where 0( , )I C is Eshelby tensor. 
 

Mori-Tanaka homogenization model, which is used in further 
computations, assumes that strain concentration tensor B� is equal 
to strain concentration tensor of single inclusion problem H 
[5,6,7]. Benveniste [9] gives the following interpretation of Mori-
Tanaka’s model: each inclusion behaves like an isolated inclusion 
in the matrix seeing average matrix strain 0 as a far-field strain. 

 
 
2.2. DIGIMAT-MF software 

 
DIGIMAT is the nonlinear multi-scale material and structure 

modelling platform. In this article capabilities of DIGIMAT-MF 
module are presented. DIGIMAT-MF is the mean field 
homogenization software used to predict the nonlinear 
constitutive behaviour of composite materials. Macro material 
properties are defined as a function of the matrix and inclusion 
constitutive relations and inclusion of the volume fraction and 
shape. DIGIMAT contain variety of micro materials models 
which can be assigned to each micro phase, for example: thermo-
elastic, elasto-plastic, viscoelastic, elasto-viscoplastic, and 
hyperelastic models [7]. 
 
 

3. Application of mean field 
homogenization 
 

As an example of application of mean field homogenization, 
estimation of average composite mechanical properties is 
presented. Mori-Tanaka homogenization scheme implemented in 
DIGIMAT-MF software is used. Composite taken into account is 
aluminium alloy 6061 reinforced with SiC particles. Aluminium 
alloy is modelled as elasto-plastic matrix material. SiC 
reinforcement is modelled as linear elastic ellipsoidal particles. 
Random orientation of particles was considered. Table 1 shows 
assumed properties of matrix material and Table 2 shows 
properties of inclusion material, respectively. 

Table 1. 
Properties of Al 6061 alloy 

Property Value Units 
Density 2.7 g/cm3 

Modulus of elasticity 68.9 GPa 
Poisson’s ratio 0.33  

Yield stress 276 MPa 

Hardening constant 255 MPa 
Hardening exponent 0.3  

 
Table 2. 
Properties of SiC  

Property Value Units 
Density 3.21 g/cm3 

Modulus of elasticity 450 GPa 
Poisson’s ratio 0.17  

 
Several analyses which different volume fraction of the 

reinforcement were carried out. Fig. 3 shows tensile responses of 
matrix material, reinforcement material and composite in form of 
stress-strain curves. Fig. 4 presents the influence of volume 
fraction of reinforcement on composite’s tensile response. 
Obtained Young modulus and Poisson ratio values for analysed 
composite are collected in Table 3. Fig. 5 shows composite’s 
Young modulus in function of volume fraction of reinforcement. 
It can be observed that in this case Young modulus dependence 
on reinforcement volume fraction is approximated by the second 
order polynomial.  

 

 
 
Fig. 3. Stress-strain curves of matrix material, inclusion material 
and composite material 
 
Table 3. 
Linear material properties of analysed composite 

SiC volume 
fraction 

Young modulus, 
GPa 

Poisson ratio 

10% 80.88 0.3192 
15% 87.54 0.3138 
20% 94.73 0.3085 

2.1.	�Mean field homogenization
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In this research strong coupling was applied. DIGIMAT as 
homogenization module was strongly coupled with finite element 
solver. 
 
 

5. Case study 
 

As the example of presented methodology the numerical 
multiscale simulation of tensile test was carried out. Finite 
element mesh of exemplary flat specimen is shown in Fig. 9. 
Aluminium alloy 6061 matrix composite reinforced with 15% 
volume fraction of SiC particles was taken into consideration. 
After plasticizing of specimen the information about stress fields 
in composite, matrix phase and reinforcement phase were 
collected (Fig. 10). Stresses values in each phase were compared 
at arbitrary chosen state. Comparison is illustrated in Table 4.  
 

 
 

Fig. 9. An exemplary specimen’s finite element mesh  
 

 
 
Fig. 10. Plastic region in matrix phase at arbitrary chosen state, 
red colour indicates plasticized material 

 
Table 4. 
Normal stress in the specimen 

 Stress, MPa 
Composite 324.6 

Matrix phase 301.5 

Reinforcement phase 531.9 
 

It can be observed that reinforcement supports the highest 
stress values and matrix material exceed the yield stress. 

To show the capabilities of presented methodology, a more 
complex example is also presented. Nonlinear response of the 
composite cantilever presented in Fig. 11 is analysed. The same 
material as in previous example is taken into account.  

 

 
 

Fig. 11. Exemplary cantilever 

Cantilever’s geometry was discretised using shell finite 
elements (Fig. 12). The cantilever of the same geometry but made 
of homogenous aluminium alloy was considered to compare the 
analyses results. 

 

 
 

Fig. 12. Finite element discretization 
 

Fig. 13 presents predicted accumulated plastic strain in matrix 
phase of composite material and Fig. 14 respectively presents 
plastic strain in homogenous aluminium alloy made cantilever. 

 

 
 

Fig. 13. Accumulated plastic strain in matrix phase of composite 
cantilever, maximum value equals 8.232·10-3  

 

 
 

Fig. 14. Accumulated plastic strain in aluminium alloy part, 
maximum value equals 1.138·10-2 

 
 
Fig. 4. Estimated stress-strain curves of composites with different 
volume fraction of reinforcement 
 

 
 

Fig. 5. Composite’s Young modulus in function of volume 
fraction of SiC particles 

 
Fig. 6 shows plastic strain of matrix phase in function of 

composite’s macro  strain in case of composite with 15% volume 
fraction of SiC reinforcement. 
 

 
 
Fig. 6. Plastic strain of matrix phase in function of macro strain in 
uniaxial state of stress 

4. Multi-scale modelling 
Multi-scale modeling [2,3] is connected with calculation of 

material properties or system behavior on one level using 
information or models taken from different levels. In this article 
two scale analysis is presented. Micro scale which represents 
composite’s microstructure is analyzed by means of mean field 
homogenization procedure implemented in DIGIMAT software. 
The finite element method with applied effective properties of 
material from micro scale is used in macro scale. Two different 
multi-scale strategies can be recognized: weak and strong scales 
coupling. In weak coupling, homogenized composite’s properties 
are transferred to finite element integration points just once and 
during the finite element computation any further data exchange 
between scales does not take place (Fig. 7). In strong coupling, 
data exchange between scales is permanent (Fig. 8). For example 
in each iteration or time step, material data prescribed to 
integration points is actualized. In case of linear analyses weak 
coupling approach is sufficient. However, to model nonlinear 
problems with taking into account microstructure’s behavior, 
strong coupling should be used. 
 

 
 

Fig. 7. Weak coupling strategy 
 
 

 
 

Fig. 8. Strong coupling strategy 

4.	�Multi-scale modelling
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The comparison between stiffnesses of composite and 
aluminium alloy cantilever is presented in Fig. 15. In this case 
finite element computation had iterative character so cantilever 
displacement is presented as a function of analysis step. 

 

 
 
Fig. 15. Deflection comparison of cantilever made of aluminium 
alloy and cantilever made of aluminium matrix composite 

 
Presented results showed an influence of SiC particles 

reinforcement on mechanical response of analysed exemplary 
part. Plastic strain reached higher values in case of homogenous 
aluminium alloy part. Composite’s cantilever is stiffer than 
aluminium alloy made one.  
 
 

6. Conclusions 
 

Presented paper shows capabilities, advantages and 
limitations of mean field homogenization method in estimation of 
effective properties of composite materials. As an example of 
MFH practical application, metal matrix composite’s effective 
properties were evaluated. In addition an influence of 
reinforcement phase volume fraction on composite macroscopic 
response was tested. Applied MFH procedure is very efficient 
from the computational point of view. This advantage allows to 
carry out full strongly coupled multi-scale analysis in reasonable 

CPU time. Proposed methodology of nonlinear multi-scale 
analysis is based on coupling of MFH scheme with finite element 
solver. Presented exemplary analysis results give more 
information about behaviour of the composite part than standard 
finite element approach. Averaged macro and per phase micro 
stresses and strains fields can be observed. The material 
parameters are not treated as the constant input data, but they are 
obtained as results of the material parameters modelling process 
on the micro-scale level. On the other hand MFH gives only 
approximate results, therefore detailed stress and strain fields in 
microstructure can not be analysed. In addition, the 
microstructure’s size influence is neglected in MFH scheme. 
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