Influence of selected parameters of Selective Laser Sintering process on properties of sintered materials

A. Stwora, G. Skrabalak

Institute of Advanced Manufacturing Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland

* Corresponding e-mail address: andrzej.stwora@ios.krakow.pl

Received 17.10.2013; published in revised form 01.12.2013

ABSTRACT

Purpose: Presented researches aimed at determining the influence of parameters of Selective Laser Sintering (SLS), such as: laser power, point distance, scanning speed and exposure time on the density and compression strength of sintered material.

Design/methodology/approach: Researches were performed using EOS 250XT (with maximum laser power of 250 W) and Renishaw AM 250 (with maximum laser power of 400W) systems for additive manufacturing. Investigated material was EOS - DirectSteel H20. There was prepared plan of the experiment incorporating above mentioned parameters of the sintering process. According to the DOE, samples for 25 sets of parameters were built, and later on investigated in order to measure and observe their densities and compression strength.

Findings: Results of the performed studies enabled to work out the basis of the methodology for finding and optimizing parameters of the SLS process depending on the optimization criteria (i.e. physic-mechanical properties of the sample, sintering time, quality of the sintered surface). Basing on the knowledge gained during performed investigations, it can be stated that the sintering technologies supplied by the manufacturers of additive manufacturing systems can be significantly improved by modifying selected parameters.

Practical implications: As the additive manufacturing allows to produce almost any shape, without limits existing in case of subtractive machining methods, it might be applied in the tooling industry for manufacturing moulds for injection moulding. Results of performed studies will find its application in making moulds with conformal cooling channels of durability comparable with solid / base materials.

Originality/value: Selective Laser Sintering and Selective Laser Melting processes the additive manufacturing methods, are booming with its possible application fields, however it is still limited due to the main limitations of the process concerning durability and strength of sintered elements. The paper presents approach and test methodology enabling relatively simple and low cost (due to not large number of samples) optimization of SLS process enabling reaching properties of sintered elements comparable with those built of solid materials.

Keywords: Additive manufacturing; Process optimization; Selective Laser Sintering/Melting

Reference to this paper should be given in the following way:

1. Introduction

Additive manufacturing methods are among the technologies which are being the most intensively developed in recent years. The most popular and available technologies concern 3D printing using polymers and plastics. Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) are among additive manufacturing technologies enabling building components from metallic powders. Invention of the powder sintering technique is dated back to 1979, when it was developed and patented by R.F. Housholder [1]. In his patent application, Housholder described for the first time the idea of sintering powders using moving (on powder surface) focused heat source (i.e. laser light), as well as subsequent deposition and consolidation of powder layers. This moving heat source causes melting/sintering and joining of neighbouring powder grains in the melt pool. Schematic diagram of the SLS process (from 1979) is presented in Fig. 1.

![Schematic diagram of powder sintering method introduced by R.F. Housholder](image1)

Modern SLS/SLM systems for sintering metallic powders consist of computer controlled laser (CO₂ or fiber laser), galvanometric scanner with laser optics and powder delivery and levelling system. These systems (supplied i.e. by Renishaw, EOS, Phoenix Systems, SLM Solutions) allow to build elements from low cost powders (like brass, tool steel), as well as sophisticated materials used in the aerospace (Inconel alloy 718, Ti6Al4V) or medicine (cobalt-chrome, nitinol). The variety of materials and possibility of manufacturing freeform elements, cause that SLS/SLM technology find widens its application fields in the industry. This technologies, as well as LENS (laser engineering near-net shape) are already in use for manufacturing components for:

- Medicine:
 - production of implants and scaffolds;
 - manufacturing of surgery tools and structures;
- Automotive:
 - production of motor and fuel pump covers and test elements;
 - production of heat exchange plates of sophisticated shape;
- Aerospace:
 - production of turbine blades with internal cooling (Fig. 2a);
 - production of BLISKs - Blade Integrated Disks (Fig. 2b);
 - component mass vs strength optimization (Fig. 3);
- Electronics:
 - production of components for sensors;
 - covers for electronic devices with sophisticated shapes;
- Tooling industry:
 - moulds for injection moulding;
 - precise metal components with wall thickness of 0.6 mm and more (Fig. 4).

![Aerospace elements manufactured by SLM technology](image2)

![High strength low weight components](image3)

![Thin wall elements](image4)

Above mentioned additive manufacturing techniques play important role in the development of new elements and subsystems used in production of implants and components of sophisticated geometrical structure. They are also crucial in the research works aimed at optimization of elements when the high endurance and low mass is required (i.e.: testing apparatus for spacecrafts).
Selective Laser Melting (SLM) are among additive manufacturing techniques that are being the most intensively developed in recent years. They are crucial in the manufacturing of surgery tools and structures, components of implants and scaffolds, covers for electronic devices with sophisticated shapes, production of motor and fuel pump covers and test elements, production of BLISKs - Blade Integrated Disks, production of turbine blades with internal cooling, production of heat exchange plates of sophisticated shape, production of molds for injection moulding, and more.

Table 1.
Chemical composition of DSH20 powder

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>4-5%</td>
</tr>
<tr>
<td>Nickel</td>
<td>10-12%</td>
</tr>
<tr>
<td>Copper</td>
<td>0.2-0.5%</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.2-0.5%</td>
</tr>
<tr>
<td>Iron</td>
<td>balance</td>
</tr>
</tbody>
</table>

Fig. 6. SEM picture of DSH20 powder before sintering
For investigations, basing on the results of the previous researches [2], group of technological parameters of the sintering process and their range were selected - presented in Table 2.

Table 2. Investigated parameters of SLS process

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser power (P)</td>
<td>200-400 [W]</td>
</tr>
<tr>
<td>Scanning Speed (SP)</td>
<td>100-130 [mm/s]</td>
</tr>
<tr>
<td>Exposure Time (ET)</td>
<td>75-100 [μs]</td>
</tr>
<tr>
<td>Point Distance (PD)</td>
<td>45-75 [μm]</td>
</tr>
</tbody>
</table>

Although for human eye process of SLS/SLM looks like continuous, it is in fact discrete process, where:

- **Scanning Speed** is the speed of laser spot between heating points (Fig. 7a):

\[
P = \text{Scanning Speed} = \frac{\text{Distance between heating points}}{\text{Time interval}}
\]

- **Exposure Time** is the length of time when laser spots in one/single point (Fig. 7b):

\[
E = \text{Exposure Time} = \frac{\text{Energy per single point}}{\text{Power density}}
\]

- **Point Distance** is the distance between laser spots (Fig. 7c):

\[
P = \text{Point Distance} = \frac{\text{Number of laser spots}}{\text{Area of sintered element}}
\]

Researches were performed for the fixed powder layer of 50 μm. Test samples were sintered in the inert gas atmosphere of nitrogen (EOS machine) and argon (Renishaw machine).

Experiments were conducted according to the derived plan (DOE). The researches were performed according to static, determined selective-orthogonal plan: PS/DS-P(a=1) with four independent variables (listed in Table 2). Output, examined parameters were:

- Hardness [HV];
- Density [g/cm³];
- Compression strength [MPa].

In order to perform necessary measurements and investigations, 5x5 matrices of samples was sintered (Fig. 8). In case of measurement of hardness and density, samples were cuboids of 15x10x15 mm. Compression strength was measured using cylindrical samples of diameter of 10 mm and height of 15 mm (with grounded faces of the samples) - Fig. 9. Samples were prepared according to Saint-Venant rule and standard: PN-57 H-04320.

![Fig. 8. Samples (in AutoFab) for measurement of hardness and density](image)

3. Results of performed experiments

Initial researches for laser power of 100-250 W were performed using EOS system. Experiments with the laser power in the range of 200-400 W were done using Renishaw machine. When the process conditions were similar for both machines, there was no significant difference in the properties of sintered samples observed. Below are presented results achieved with the Renishaw AM 250 machine system.

3.1. Compression strength

During measurements, samples (Fig. 9) were axially compressed with constant feed rate in the room temperature (10-35°C), until they were shortened by 0.2% of initial length. For sintered material - DirectSteel H20, initial load was set at 3900N. Analysis of the obtained results (measurement of yield strength) proves that in case of sintered samples, compression strength is within the range form 752-823 MPa for the optimal process conditions.
In Fig. 10 is presented compression strength as the function of point distance and laser power. In the presented figure, exposure time was constant, equal to 92 μs and scan speed was equal 87 mm/s.

Fig. 10. Compression strength vs Point distance and Laser Power with constant exposure time and scan speed (ET = 92 μs, SP = 87 mm/s)

3.2. Density

Density was measured using saturation in vacuum method, according to the Polish Standard PN-EN 623-2 (Archimedes method). Densities of sintered elements were within the range of 6.73-7.45 g/cm³. Achieved results are very similar to density of respective steel (solid material) - tool steel H13 (density of 7.8 g/cm³), which has similar application field as used powder.

Figure 11 presents density as the function of point distance and laser power. In the presented figure, exposure time was constant, equal to 100 μs and scan speed was equal 84.5 mm/s.

Porosity of the samples was measured. For samples of the highest density equal to 7.45 g/cm³ (Point Distance = 50 μm, Laser Power = 200 W and Exposure Time = 100μs), sintered sample had porosity not exceeding 2.5%. Results of measurements were proven by the SEM photo of microstructure - Fig. 12.

Fig. 12. SEM photo of samples microstructure with visible small pores of diameter not exceeding 10 μm

3.3. Hardness

For measurement of hardness, Frankoskop universal optical hardness meter was used. Measurements were performed with the load of 294.2N. As in case of materials used for tooling industry it is important that there would not appear significant differences in hardness among various areas of the tool, samples were prepared (grounded) in the form presented in Fig. 13.

Fig. 13. Sample prepared for hardness measurement

Figure 14 presents hardness as the function of point distance and laser power. In the presented figure, exposure time was constant, equal to 100 μs and scan speed was equal 100 mm/s.

Analysis of the results of hardness measurements proves that the highest value is reached for the sample sintered when PD = 50μm, P = 200W and ET = 100μs. The best results were obtained for the flat surface parallel to the surface of base plate.
4. Conclusions

Basing on the results of performed experiments it can be stated that elements sintered of Direct Steel 20 powder are of significant properties in comparison to elements build of solid material - tool steel H13. Sintered freeform elements may be used in the same way/conditions as those made of solid materials, for example as moulds and mould inserts used for injection moulding.

The best results (high hardness, high density, high compression strength) was achieved when the: PD = 50 ȝm, ET = 100 ȝs and P = 200W - similar results (density, hardness and compression strength) were achieved for both used machines (EOS 250xt and Renishaw AM250) machines.

Results of performed experiments prove that the most significant influence for investigated properties of sintered sample have: Laser power, Point distance, Exposure time.

When the power of the laser was set at below 200 W, the samples were not sintered properly, when exposure time was within the specified range. To achieve satisfactory results (in the means of density, porosity and compression strength) with low power systems it would be necessary to increase significantly the exposure time and the same lengthening time necessary for manufacturing desired element.

Scanning speed did not have significant influence on the performance of the process (sample properties) - it might be possible to reduce significantly time of machining by maximizing scan speed, in case of building large elements.

Acknowledgements

Measurements of hardness and density, as well as SEM photographs of sample microstructures and raw powder were done by specialists from the Materials Science Department of the Institute of Advanced Manufacturing Technology in Kraków, Poland.

References