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ABSTRACT

Purpose: The paper presents method in predicting the volume fractions of ferrite, pearlite, 
bainite and martensite of steel cooled continuously from the austenitizing temperature, 
basing on the chemical composition, austenitizing temperature and cooling rate.
Design/methodology/approach: In the paper it has been applied a hybrid approach 
that combined application of various mathematical tools including logistic regression and 
multiple regression to solve selected tasks from the area of materials science.
Findings: Computational methods are an alternative to experimental measurement 
in providing the material data required for heat treatment process simulation.
Research limitations/implications: All equations are limited by range of mass 
concentrations of elements which is presented in Table 2.
Practical implications: The worked out formulae may be used in computer systems 
of steels’ designing for the heat-treated machine parts.
Originality/value: The paper presents the method for calculating the volume fractions 
of ferrite, pearlite, bainite and martensite of the structural steels, depending on their chemical 
composition, austenitizing temperature and cooling rate.
Keywords: Computational Material Science; Steels; Statistic Methods;  CCT diagrams
Reference to this paper should be given in the following way: 
J. Trzaska, Calculation of volume fractions of microstructural components in steels cooled 
from the austenitizing temperature, Journal of Achievements in Materials and Manufacturing 
Engineering 65/1 (2014) 38-44.

ANALYSIS AND MODELLING

1. Introduction 
Progress in the field of materials science is inextricably 

linked with the application and development of 
computational methods, numerical methods, methods of 
computational intelligence and artificial intelligence. 

Mathematical modelling, computational intelligence and 
artificial intelligence indicate to the big potential connected 
with using this methods in the field of material engineering 
[1-10]. 

The continuous cooling transormation (CCT) diagrams 
describe the transformations taking place during continuous 
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cooling at different cooling rates from austenitizing 
temperature. The CCT diagrams provide information on the 
transformation start and finish temperatures, hardness of 
steel and volume fractions of microstructural constituents 
for each particular cooling rate. 

This allows to predict the microstructure, transformations 
temperature and hardness of steels after heat treatment like 
quenching, normalizing and fully annealing. The dilatometric 
method supplemented with metallographic investigations 
with different velocities of samples and their hardness 
measurements are usually used for establishing a CCT 
diagrams. The investigations are time consuming and 
require costly research apparatuses. These are the main 
reason for many attempts of modeling steel transformations 
during cooling. Many of these attempts involve 
mathematical models of processes proceeding in steel 
during cooling or empirical formulae developed after many 
experiments [11-14]. 

A method of modelling CCT diagrams with the use of 
neural networks has been described in detail in the 
publications [15-18]. Another example of method 
application for CCT diagrams calculation is a model 
presented in [19] that employs multiple regression method 
and artificial neural networks. 

The paper presents the methodology of modelling using 
the regression method of the relationship between the 
chemical composition and the volume fractions of the 
structural constituents of the steel cooling from the 
austenitizing temperature. 

2. Materials and method

Basing on the literature information, the data set was 
worked out containing chemical compositions, 
austenitizing temperatures, as well as and volume fractions 
of the microstructural components as functions of the 
cooling rate. Data required for model development were 
prepared basing on the CCT diagrams. Mass concentrations 
of the particular alloying elements, cooling rate, and 
austenitising temperature were used as input data. The data 
set consisted of 500 CCT diagrams. The number of cases 
for particular data sets has been presented in Table 1.  
A range of the accepted mass concentrations of the 
elements has been presented in Table 2. Multicollinearity 
among the independent variables were evaluated using 
correlation matrix (Table 3). Estimation coefficients of the 
regression equation was carried out using least squares 
method. The assessment of the significance of the 
regression coefficients were made using the Student's t-test. 
The independent variables are statistically significant in 

explaining the variation in the volume fractions of the 
microstructural constituents if p-values are less than 0.05 
for the significance level of 5%. 

Table 1. 
Number of cases in data sets 

 Data set 

Ferrite Pearlite Bainite Martensite 

Regression 1586 1586 1586 1586 

Classification 5380 5380 5380 3388 

Table 2. 
Ranges of mass concentrations of elements 

R
an

ge
 

Mass fractions of elements, % 

C Mn Si Cr Ni Mo V Cu 

min 0.11 0.12 0.1 0 0 0 0 0 

max 0.60 2.04 1.7 2.24 3.85 1.05 0.46 0.38

average 0.32 0.77 0.39 0.84 0.78 0.17 0.04 0.08

standard 
deviation 0.13 0.36 0.31 0.52 1.04 0.22 0.08 0.09

Table 3. 
Correlation matrix for independent variables 
 C Mn Si Cr Ni Mo V Cu TA

C 1         
Mn 0.09 1        
Si 0.17 -0.02 1       
Cr 0.02 -0.40 -0.20 1      
Ni -0.24 -0.38 -0.21 0.18 1     
Mo -0.18 -0.25 -0.10 0.19 0.20 1    
V 0.13 -0.02 0.13 0.23 -0.15 0.36 1   
Cu 0.08 -0.19 -0.08 0.12 0.01 0.11 -0.01 1  
TA  -0.08 -0.04 0.15 0.07 -0.28 0.14 0.30 0.03 1 

On the basis of the analysis of different forms, general 
formula embracing the influence of the chemical 
composition and austenitizing temperature as well as 
cooling rate on the volume fractions of ferrite (Uf), pearlite 
(Up), bainite (Ub) and martensite (Um), including the two 
way interactions between independent variables, general 
forms of equations have been accepted: 

2. Materials and method
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for defining the volume fractions of ferrite: 

Uf=a0+a1·C+a2·Mn+a3·Si+a4·Cr+a5·Ni+a6·Mo+a7·TA+a8·vc
0.25

+a9·C·vc
0.25+a10·Wf+a11·Wp+a12·Wb+a13·Wm (1) 

for defining the volume fractions of pearlite: 

Up=a0+a1·C+a2·Mn+a3·Si+a4·Cr+a5·Mo+a6·vc
0.25+a7·C·vc

0.25

+a8·Wf+a9·Wp+a10·Wb+a11·Wm  (2) 

for defining the volume fractions of bainite: 

Ub=a0+a1·C+a2·Mn+a3·Si+a4·Mo+a5·Cu+a6·TA+a7·C·vc
0.25+a

8·Wf+a9·Wp+a10·Wb+a11·Wm (3) 

for defining the volume fractions of martensite: 

Um=a0+a1·C+a2·Mn+a3·Si+a4·Cr+a5·Ni+a6·Mo+a7·Cu-
a8·TA+a9·vc

0.25+a10·C·vc
0.25+a11·Wf+a12·Wp+a13·Wb+a14·Wm (4) 

where: 
C, Mn, Cr, Ni, Mo, V – mass fractions of the alloying 
elements; 
a0, a1.., a14 – coefficients calculated with the regression 
analysis;
TA – austenitizing temperature, °C; 
vc – cooling rate, °/min. 
Wf, Wp, Wb,Wm – dichotomous variables, whose values  
(0 or 1) were determined basing on the binomial logistic 
regression model. 

The type of microstructure developed after cooling the 
steel was specified using four binary nominal variables, 
whose values were determined basing on the logistic 
regression model. A classifier had to be developed, to 
obtain this information, using as input data the mass 
concentrations of the elements, austenitizing temperature, 
and cooling rate. The particular classifiers were developed 
using logistic regression. The general form of formulae are 
presented in equations (5)-(6). The assessment of the 
significance of the regression coefficients were made using 
the Wald chi-square test.

WX=exp(SX)/{1+exp(SX)} (5) 

where: 
X=f (ferrite), p(pearlite), b(bainite), m(martensite), 

SX=b0X+b1X·C+b2X·Mn+b3X·Cr+b4X·Ni+b5X·Mo+b6X·V+b7X·
TA +b8X·vc (6)

3. Calculation results

The formulae describing the influence of the chemical 
composition and cooling rate on the volume fractions of the 
microstructural constituents worked out using the multiple 
regression, are presented in equations (7)-(14). Classifiers 
used for forecasting occurrences of the particular 
microstructural constituents in steel are presented in 
equations (5)-(6), (15)-(18). Example of the assessment of 
the significance of the regression coefficients for volume 
fraction of ferrite are presented in Table 4.  

Table 4. 
The assessment of significance of regression coefficients 

 Coefficients Standard 
Error t Stat P-value 

Intercept 116.0372 6.313174 18.38016 1.71E-68 

C -132.742 5.615895 -23.6369 6.2E-106 

Mn -9.51104 1.246579 -7.62971 4.05E-14 

Si -3.02052 1.275324 -2.36843 0.017984 

Cr -9.90187 0.871307 -11.3644 8.11E-29 

Ni -4.99392 0.481712 -10.367 2.1E-24 

Mo -4.02409 1.839577 -2.18751 0.028852 

TA -0.02137 0.005449 -3.92227 9.15E-05 

Vc
0.25 -6.16667 0.416565 -14.8036 1.62E-46 

C·Vc
0.25 12.25599 1.20891 10.13805 1.94E-23 

Wf 10.16293 1.125498 9.029713 4.91E-19 

Wp 5.799526 1.18136 4.909195 1.01E-06 

Wb -9.30904 0.891163 -10.4459 9.68E-25 

Wm -11.0791 1.213641 -9.12883 2.07E-19 

 (7) 

Uf=116-132.7·C-9.5·Mn-3·Si-10·Cr-5·Ni-4·Mo- 
0.021·TA-6.17·vc

0.25+12.2·C·vc
0.25+10.2·Wf+

5.8·Wp-9.3·Wb-11.1·Wm (8) 

 (9) 

3. Calculation results
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Up=-5.2+98.2·C+3.1·Mn+6.5·Si+3·Cr-8.2·Mo+3.7·vc
0.25-

15.3·C·vc
0.25-5.1·Wf+25.2·Wp-11·Wb-18.2·Wm (10) 

 (11) 

Ub=-11.5+25.8·C-7.4·Mn-7.2·Si+4.6·Mo-20.8·Cu+0.03·TA-
9.1·C·vc

0.25+13.1·Wf-18.4·Wp+34.8·Wb+6.2·Wm (12) 

 (13) 

Um=10.2+2.8·C+13.7·Mn+4.2·Si+7.8·Cr+4.9·Ni+8.1·Mo+1
4.5·Cu-0.02·TA+2·vc

0.25+13.7 C·vc
0.25-18.2·Wf-12.1·Wp-

14.3·Wb+23.2·Wm (14) 

The values of the coefficients: Wf, Wp, Wb, Wm would 
be calculated using equations (5)-(6) and (15)-(18). 
Calculated using the equations (8)-(19) values of the 
volume fractions of microstructure components were scaled 
proportionally so that their sum is equal to 100. 

Kf=18.4-15.4·C-1.9·Mn+0.7·Si-2.5·Cr-1.5·Ni-
4.8·Mo+2.4·V+1.4·Cu-0.004·TA-vc

0.25 (15) 

Kp=12-1.4·C-2.3·Mn-2.3·Cr-1.4·Ni-6·Mo+3.9·V-0.002·TA-
1.2·vc

0.25 (16) 

Kb=1.3-3.7·C+0.45·Mn+0.2·Cr+0.18·Ni+1.9·Mo-
0.17·vc

0.25-0.57·[(4.35- vc
0.25)2]0.5 (17) 

Km=-
16.5+4.7·C+2.6·Mn+0.6·Si+2.4·Cr+1.2·Ni+1.9·Mo+4.8·Cu 
+0.006·TA+1.1·vc

0.25 (18) 

The quality assessment coefficients of the classifier are 
presented in Table 5. The lowest mean error value was 
obtained by using formula describing the influence of 
chemical composition, austenitizing temperature and 
cooling rate on the volume fraction of ferrite. The highest 
mean error value was obtained for model describing 
volume fraction of bainite. Mean error values, standard 
deviation of the error and the correlation coefficient for the 
volume fractions of ferrite, pearlite, bainite and martensite 
are given in Table 6.  

Table 5. 
Quality assessment coefficients for models, used as 
classifiers for determining the types of occurring 
transformations 

Transformation areas Coefficient of correct 
classifications, % 

Ferritic 85 
Pearlitic 86 
Bainitic 73 

Martensitic 84 

To verify the model worked out, the experimental 
volume fractions of ferrite, pearlite, bainite and martensite 
curves were compared with curves calculated using the 
empirical formulae. Examples of the diagrams worked out 
are shown in Figs. 1-4. 

An example of the comparative diagrams showing 
changes of volume fractions of the microstructural 
constituents depending on time required to cooling the steel 
from the austenitizing temperature  for results obtained 
using the empirical formulae and the experimental data are 
shown in Figs. 5-7. 

Table 6. 
Error values and correlation coefficients for volume fraction of microstructural constituent model 
Microstructural 
constituent 

Mean absolute 
error, % 

Standard deviation of  
the error, % 

Quotient  
of standard deviations 

Pearson correlation 
coefficient 

Ferrite 9.5 9.7 0.37 0.87 

Pearlite 9.9 11.3 0.39 0.86 

Bainite 15.8 14.2 0.44 0.76 

Martensite 12.3 12.6 0.31 0.91 
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Fig. 1. The comparison of the experimental and calculated 
volume fractions of ferrite  for the steels with a mass 
concentration of elements 0.38%C, 0.74%Mn, 0.26%Si, 
0.9%Cr, 0.26%Ni, 0.17%Cu austenitised at temperature of 
880°C 

Fig. 2. The comparison of the experimental and calculated 
volume fractions of pearlite for the steels with a mass 
concentration of elements 0.38%C, 0.74%Mn, 0.26%Si, 
0.9%Cr, 0.26%Ni, 0.17%Cu austenitised at temperature of 
880°C 

Fig. 3. The comparison of the experimental and calculated 
volume fractions of bainite for the steels with a mass 
concentration of elements 0.38%C, 0.74%Mn, 0.26%Si, 
0.9%Cr, 0.26%Ni, 0.17%Cu austenitised at temperature of 
880°C 

Fig. 4. The comparison of the experimental and calculated 
volume fractions of martensite for the steels with a mass 
concentration of elements 0.38%C, 0.74%Mn, 0.26%Si, 
0.9%Cr, 0.26%Ni, 0.17%Cu austenitised at temperature of 
880°C 

a)  b) 

                      

Fig. 5. Fractions of the microstructural constituents in steel with concentrations of: 0.47% C, 1.37% Mn, 0.36% Si, 0.15%Cr, 
0.19%Cu, austenitized at temperature of 875ºC, a) experimental, b) calculated 
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a) b) 

Fig. 6. Fractions of the microstructural constituents in steel with concentrations of: 0.38% C, 0.79% Mn, 1.37% Si,
0.15%Cr, 0.16%Ni, austenitized at temperature of 880ºC, a) experimental, b) calculated 

a) b) 

Fig. 7. Fractions of the microstructural constituents in steel with concentrations of: 0.43% C, 1.67% Mn, 0.28% Si,
0.32%Cr, 0.11%Ni, 0.1%V, austenitized at temperature of 870ºC, a) experimental, b) calculated 

4. Summary

Multiple regression and logistic regression were used to 
develop formulae for calculating volume fractions of 
ferrite, pearlite, bainite and martensite. The model worked 
out makes it possible to calculate volume fractions of the 
microstructural constituents for the steel with a known 
chemical composition. Determining the volume fractions of 
the microstructural constituents, according to the method 
proposed in this paper, calls for determining the types of 
the microstructure that occur in the steel after cooling from 
the austenitising temperature. The types of the micro-
structural constituents were determined using four 
dichotomous variables containing the information if the 
following constituents are present in the structure: ferrite, 

pearlite, bainite, martensite. A classifier had to be 
developed, to obtain this information, using as input data 
chemical composition cooling rate and austenitising 
temperature. In this work, the austenite grain size and 
austenitizing time, have not been taken into account 
because of the lack of the information in the majority of  
CCT diagrams used for preparing the data set.
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