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ABSTRACT

Purpose: A route to manufacture porous carbon fiber reinforced plastic (CFRP) for study 
purposes is described.
Design/methodology/approach: The porous CFRP is characterized using standard 
techniques such as matrix digestion as well as the more sophisticated method of high 
resolution Microfocus X-Ray Tomography (µCT). A comparison of the results of those 
methods is presented. The mass gains of specimens with a wide range of porosity have 
been measured both in constant humidity and in alternating environments.
Findings: It could be shown that severe temperature changes can temporarily increase 
the moisture content of porous CFRP. However, after the return to a constant environment, 
the moisture content returns back to saturation levels. Furthermore, it could be shown by 
X-Ray Tomography that even under severe climatic conditions no permanent liquid water 
condensates inside the pores.
Research limitations/implications: Using Microfocus Computed Tomography it could 
be shown that even after nearly a year under hot-wet conditions and more than 150 severe 
temperature cycles there is no liquid water detectable inside the pores.
Originality/value: In this paper the effects of severe temperature changes and high 
humidity on porous CFRP.
Keywords: Porosity; Voids; Computed tomography; CFRP
Reference to this paper should be given in the following way: 
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PROPERTIES

1. Introduction 

Whenever complex structures are made from CFRP, 
porosity cannot be ruled out. It has been known for a long 
time that porosity can influence the water uptake as well as 
the mechanical properties of CFRP [1,8]. It is a matter of 

high concern whether there is condensation within porous 
CFRP if it is subjected to sharp temperature changes in 
high humidity environments since this condensation might 
lead to ice and this might damage the material from within.  

In literature, several ways to produce porous CFRP 
have been described, ranging from the reduction of 
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autoclave pressure to pores simulated by inserting PTFE 
monofilaments [1,7,10]. In order to be as close to real 
aircraft material as possible, the more intrusive methods 
such as spraying the individual prepreg layers with water 
during the lay-up of the laminate were of only limited 
usefulness. Instead, the parameters that can cause undesired 
porosity in real parts were used to produce the now wanted 
porosity on a specimen level. There are two main causes 
for porosity in real aircraft parts. The first type of pores 
stems from air that is entrapped during the layup. The other 
type of pores is formed during the cure cycle whenever the 
vapor pressure of any constituent of the matrix exceeds the 
countering outside pressure and therefore this substance 
starts to boil. Common sources of vapor pressure are 
residual solvents and water. 

2. Material and method 

2.1. Specimen manufacturing 

Hexcel M18-1/G939 prepreg [6] was chosen as the 
CFRP base material due to its widespread use within the 
aviation industry. G939 is an orthotropic fabric material 
with similar properties in 0° and 90° direction. When 
laminated and cured under nominal conditions, this 
material has a fiber/volume content of 55% and a nominal 
single layer thickness of 0.227 mm. Stacking sequence for 
all specimens was [[+45/0/-45/90]x]s and manufacturing 
was acc. to DIN EN 2565 [3]. 

For this study, entrapped air as the main pore source 
was not desirable since it is hard to control the amount of 
air and therefore to get reproducible results. Therefore, to 
ensure the absence of air, a vacuum compactation was 
applied after each prepreg layer. Only on one laminate this 
compactation step was not applied. This one laminate was 
meant to be a test on how much porosity is possible at all 
[11]. This resulted in very high porosity and a significant 
increase in thickness – Table 1. 

In all the other laminates porosity was created only with 
the vapor pressure method. Curing of the laminates was 
done according to a modified cure cycle. The regular cure 
cycle was modified in three different ways. The soak phase 
under vacuum was skipped in order not to flush out the 
pores along with the resin flow. Autoclave pressure was 
varied between 8.2 bar and 0.96 barabs- Figure 1. No 
vacuum was applied during the whole cure cycle to further 
enlarge the amount of pores. The median atmospheric 
pressure in Erding is 0.96 barabs due to its elevation.  

2.2. Measurement methods 

After curing, the plates were stored at room temperature 
for > 24 h and then inspected with Ultrasonic Testing (UT). 

After this initial inspection the plates were cut into 
10 mm x 20 mm specimens with a water cooled diamond 
saw. The individual position of each specimen was noted. 
Therefore, it was later possible to compare the porosity 
results of the specimens with the UT data from the plates.  

Table 1. 
List of specimen plates 

Plate Number Length x Width, mm Thickness, mm Absolute Cure Pressure, bar 
1 360 x 260 2.12 8.2 
2 360 x 260 2.11 5.6 
3 360 x 260 2.12 5.0 
4 360 x 260 2.13 4.5 
5 360 x 260 2.14 4.0 
6 360 x 260 2.11 3.5 
7 360 x 260 2.11 3.2 
8 360 x 260 2.12 3.0 
9 360 x 260 2.14 2.5 

10 360 x 260 2.13 2.4 
11 360 x 260 2.12 2.0 
12 360 x 260 2.23 1.6 
13 360 x 260 2.35 0.96 
14* 360 x 260 3.52 0.96 

*Plate 14 was not subjected to vacuum compactation during layup. As a result a lot of air remained between the prepreg layers. This was 
done on purpose in order to produce as much porosity as possible 

2.  Material and method

2.2.  Measurement methods

2.1.  Specimen manufacturing
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17The effects of severe temperature changes and high humidity on porous CFRP

Volume 67 • Issue 1 • November 2014

that had been scanned along with it and then been 
measured with matrix digestion. Using this method, a good 
correlation between µCT and matrix digestion has been 
achieved - Figure 3a. 

DIN EN 2564 states that the precision for porosity 
content is estimated to be 1% absolute. The good linearity of 
the correlation suggests a better precision. µCT precision in 
this study is estimated to be 0.2%. As it has been reported in 
literature [7,9,10] there was a linear correlation between 
ultrasonic attenuation and pore content – Figure 3b. 

3.2. Influence of cure pressure 

After establishing the accuracy of the porosity 
measurement process itself, it is possible to correlate the 
manufacturing data with the obtained porosity results. 
There was a clear link between autoclave pressure and 
average porosity content – Figure 4.  

At an autoclave pressure of 8.2 bar, porosity could not 
observed within the given detection limit, although no 
vacuum had been used. However, if autoclave pressure was  

Table 2. 
Inspection parameters 

Ultrasonic Testing Microfocus Computed Tomography Matrix Digestion 
Impulse-Echo mode Voltage: 70 kV Acc. to DIN EN 2564 [4] 

Sender damping: 33 Current: 65 µA without any deviations 
Pulse Width :1 Voxel size: 11 µm  

Step Size: 0.1 mm   
Frequency: 5 MHz   

Amplification: 40 dB   

Fig. 2. A small variation of the threshold (arrows) leads to almost invisible changes in the marked voxels (circles). Yet the 
measured porosity content on the left side is 2.96 % and on the right side 4.63 % [5] 

3.2.  Influence of cure pressure
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3.3.  Water absorption
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a) b) 

   

Fig. 5. Mass gain of batch A (a) and batch B (b) [11] during intermittent hot/wet and cyclic storage 

a)  b) 

        

Fig. 6. CT cross-section through a specimen from plate 9. Specimen porosity is 5%. Image a) is after curing, image b) is after 
thermal cycling as depicted in figure 5 No water is detectable in any of the pores. The small variations between the images 
(arrows) are due to minor alignment errors 

µCT was used to backup this result by comparing the 
3D scans of freshly manufactured specimens with scans of 
exactly the same specimens after storage. It was possible to 
do CT- cross-sections at identical regions of the specimens 
and thus to search for any internal changes within the 
specimen.  

However, no changes were detected, especially no 
liquid water. The very small differences that can be seen 
between cross-sections like in Figure 6 are due to the not 
absolutely perfect alignment of the scans. 

In order to cross-check if liquid water would be 
detected in µCT cross-sections, a simple experiment was 
used. A few drops of water were put atop some specimens 
before the CT scan. This water was sucked into the narrow 
crevice between the conformal specimen holder and the 
samples by capillary forces. From there it could also enter 
those pores of the specimens that had an opening to the 
outside. The specimen holder was then sealed with a thin 
adhesive tape so that the specimens remained wet during 
the 2 h scan time.  

10 mm 
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The water inside those pores on the outside that had 
been reached by the capillary water can be clearly seen – 
Figure 7. 

Fig. 7. Porous specimen after contact with liquid water. 
Pores that had a connection to the surface have filled up. 
This water is clearly detectable using µCT 

4. Conclusion 

In this study, it could be shown that porosity did speed 
up the absorption of moisture. This was to be expected 
since diffusion through the gas filled pores is much faster 
than through solid CFRP. However, under the parameters 
applied, porosity had no long term influence on the amount 
of absorbed water. In this regard, there was no significant 
difference between CFRP specimens ranging from pore-
free to > 20% porosity. 

Using Microfocus Computed Tomography it could be 
shown that even after nearly a year under hot-wet 
conditions and more than 150 severe temperature cycles 
there is no liquid water detectable inside the pores. This 
leads to the conclusion that for CFRP of this type and 
thickness, there is no danger of internal water filled pores 
and therefore also no danger of high internal pressure due 
to ice inside the pores. 
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