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ABSTRACT

Purpose: The article discusses the use of artificial neural networks for research and prediction 
of the impact of chemical elements and heat treatment parameters on the mechanical properties 
of stainless steels optimized by genetic algorithm. 

Design/methodology/approach: To improve the quality of artificial neural network models 
and improve their performance the number of input variables of artificial neural networks has 
been optimized with use of genetic algorithms. Then a computational model build with optimised 
artificial neural networks were trained and verified.

Findings: Optimization, except of tensile strength Rm case, has allowed the development of 
artificial neural networks, which either showed a better or comparable result from base networks, 
and also have a reduced number of input variables. As a result, in computational model 
constructed with use of these networks the noise information is reduced.

Research limitations/implications: Data analysis was needed to verify if obtained data 
used for modelling are relevant to use them in artificial neural networks training processes.

Practical implications: The use of artificial intelligence allows the multifaceted development of 
stainless steels engineering, even if only a small number of descriptors is available. Constructed 
and optimised computational model build with use of optimised artificial neural networks allows 
prediction of mechanical properties of rolled ferritic stainless steels after normalization.

Originality/value: Introduced model can be obtain in industry to reduce manufacturing costs 
of materials. It can also simplify material selection, when engineer must properly choose the 
chemical elements and adequate plastic and/or heat treatment of stainless steels with required 
mechanical properties.

Keywords: Numerical techniques; Computational material science; Artificial algorithms; 
Stainless steel
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1. Introduction 

One of the main tasks of the modern engineer is the 
appropriate choice of material engineering, which will meet 
all the required conditions. It is also important, that 
a technological process of material manufacturing does not 
damage the natural environment. Therefore, to take into 
account all these problems and requirements, materials 
engineering are using computational models of material 
properties. 

The development of materials engineering has led to 
increased competition in the market, also for stainless 
steels. Anti-corrosion coatings applied to the material are 
very stable and have high aesthetic characteristics. 
However, the use of conventional corrosion-resistant 
materials isproviding the structure durability even if 
delamination of the coating occurs. Mechanical properties 
of these materials are dependent on their chemical 
composition and the nature of their treatment. Therefore, to 
obtain the required mechanical properties and relatively 
low manufacturing costs of these materials, the engineer 
must properly choose the chemical elements adequate 
plastic and/or heat treatment. The classic approach, i.e. 
preparation of samples and performing a series of 
experiments to determine the properties of each of the 
species of these steels is a risky undertaking, requiring 
significant investment of time and money. The use of 
artificial intelligence allows the multifaceted development 
of stainless steels engineering, even if only a small number 
of description vectors is available [1-7]. 

2. Material 

Ferrite stainless steels after rolling treatment structural 
steels were selected for examinations as example material. 
As the main criterion for selection of steel types was the 
chromium concentration, which for stainless steel exceed 
10.5% [8-10]. Further criteria for minimal and maximal 
chemical elements concentration, conditions of heat and 
plastic treatment were taken from literature: the selection of 
mechanical properties, which were examined was based on 
analysis of the steel markets and literature studies [11-15]. 

For the description of stainless steel, five mechanical 
properties present in the metallurgical certificate have been 
selected. To describe the above properties set of descriptors 
characterizing steel in manufacturing process has been 
developed. It consists of chemical composition described 
by concentration of thirteen of the most common elements 
in steels temperature and time of normalizing treatment and 
the diameter of the final product. Steel was manufactured 
in electric arc furnaces with devices for steel vacuum 
degassing (VAD). The material was supplied in the form of 
long rods after rolling and normalising. 

2. Investigation mythology 

Methods of artificial intelligence, together with data 

obtained on the way experiments, make possible the 

development of computational model. This model will 

allow prediction of mechanical properties of mechanical 

properties of ferrite stainless steels after rolling treatment 

based on input variables such as chemical composition and 

treatment conditions [16-23]. 

First stage of researches was the development 

ofcomputational modelbuilt with the use of artificialneural 

networks. On the basis of input values, such as : 

• chemical elements concentration, 

• normalizingtemperature and time, 

• rod’s diameter, 

five mechanical properties are predicted: 

• yield strength (R0.2) 

• tensile strength (Rm) 

• relative elongation (A5) 

• relative area reduction (Z) 

• hardness (HB) 

This model was obtained with use of all input parameters. 

To improve the quality of artificial neural network 

models and improve their performance, in the second stage 

of investigation, the number of input variables has been 

optimized with use of genetic algorithms. Then a second 

model build with optimised artificial neural networks were 

trained with modified set of input variables with use of the 

same set of data. 

For comparison purposes a third model was build. This 

time for the selection of input variables an automatic 

designer placed in the modelling software was used. 

Preparation of data used for modelling was performed 

using Excel from Microsoft Office [24]. Training of artificial 

neural networks and genetic algorithms optimization were 

performed using Statistica. Neural Network developed by 

Statsoft [25]. 

4. Modelling of ferrite stainless steels 

mechanical properties after rolling  

To build an artificial neural network, which will deliver 

results with a high correlation to laboratory measured 

values, an appropriate number of variables affecting the 

network is required. Too many variables may adversely 

affect obtained results, causing noise information. These 

less significant variables should be removed. Removing of 

variable, that significantly affects the output, will result in 

larger error. 

1.  Introduction 3.  Investigation mythology

4.  Modelling of ferrite stainless steels 

mechanical properties after rolling 

treatment

2.  Material
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a) b) 

c) d) 

Fig. 1. Data set histograms for a) manganese concentration, b) carbon concentration, c) normalisation temperature, 

d) vanadium concentration of examined stainless steels 

  

One way to select the relevant variables is to use the 

"automatic designer" for artificial neural networks, which 

select random topographies having the smallest statistical 

error and the best quality based on its search algorithms. 

Another way is to use a genetic algorithm. It indicates 

which variables have a major impact on output values, and 

which have no impact at all. 

4.1. Input data analysis 

Data analysis is needed to verify if data suitability to 

use them in artificial neural networks training. At the 

beginning from the data ranges of variables for artificial 

neural network model was obtained. The best distribution 

of data, which should be used for artificial neural network 

training is evenly distributed number of variables in the 

whole range. Unfortunately, such distribution for all 

variables is hard to achieve. Variables with all values at 

one point may have no effect at all on the artificial neural 

network model, it was recommended to remove such 

variables before building a model. Because of the project, 

such variables will be used for verification. It is assumed 

that the genetic algorithm should remove these variables 

from the set of input variables. 

4.1.  Input data analysis
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Then the distribution of the variable within these ranges 

was determined with use of the histogram tool in Microsoft 

Excel, which allows further to illustrate the results in a 

graph. The best values distribution was observed for: time 

of normalising, carbon (Fig. 1a), manganese (Fig. 1b.), 

silicon, copper, and diameter. Histograms, which show that 

variables can affect in limited range are: the treatment 

temperature (Fig. 1c), phosphorus, sulphur, chromium, 

nickel, molybdenum. Variables most focused, which 

probably will not affect at all on the model are: aluminium, 

titanium, vanadium (Fig. 1d) and tungsten. 

4.2. Construction of base artificial neural networks 

First model was built with use of all seventeen input 

variables without any optimisation. Ranges of input 

variables and their distribution are introduced in 

Table 1. The set of all vectors were divided into three 

subsets in relation 2-1-1. With half of all vectors a set of 

vectors used to modify the neuronal network weights 

(training set) were created, one quarter of vectors was 

assigned to evaluate the prediction error during learning 

process (validation set), and the remaining part was used 

to independent determination of the prediction accuracy 

at the end of the network training process (testing 

set).Assignment of vectors to the appropriate sets was 

random. The required accuracy of prediction is different 

among applications. The most important artificial neural 

networks parameters, which were taken into consideration 

when selecting best available network, was the average 

absolute error, deviation ratio and Pearson correlation [21]. 

Architectures and regression statistics for best artificial 

neural networks are introduced in Table 2. This model was 

selected for optimisation with use of genetic algorithm. 

4.3. Optimization of artificial neural network using 

genetic algorithm 

The next step was to optimize the selected artificial 

neural network using genetic algorithm. It consisted in 

generating the "mask" of variables, which will be used 

to model the neural network and to examine its error. By 

adding to each variable penalty unit, it is possible to 

reduce the number of input variables, which may have a 

positive impact on its regression statistics. The 

parameters of the genetic algorithm in each test were the 

same except the penalty unit, which increased at each 

use of the algorithm. Algorithm population was 200 

individuals with the number of 200 generations. 

Mutation ratio of 0.1 and crossing ratio of 0.4 are 

standard values for Holland’s classic genetic algorithm. 

To speed up modelling processes, sampling value was 

set to 0.3. This reduced the search time for about 2 

minutes and allowed to increase the number of 

individuals in the population and the number of 

generations. Then, artificial neural networks were 

constructed with use of variables suggested by genetic 

algorithm. Architectures and regression statistics for 

best artificial neural networks in this model are 

introduced in Table 3. 

4.4. Construction of the artificial neural networks 

usingautomatic designer 

For verification purposes, third computational model 

was developed. Artificial neural networks for this model 

were created using the automatic designer who supports 

the critical design stages of construction. It has many 

tools that make it easy to automatically select the 

appropriate network architecture and optimize the 

number of input variables. Automatic designer also 

automatically stores the best artificial neural network 

created in during the development Model constructed 

from these artificial neural networks will be used to 

evaluate the effectiveness of a genetic algorithm. 

Architectures and regression statistics for best artificial 

neural networks used in this model are introduced in 

Table 4. 

Table 1.  

Ranges of input values

range 
diameter

[mm] 

chemical composition [%] normalising 

C Mn Si P S Cr Ni Mo W V Ti Cu Al temp. [°C] time [min]

min. 25 0.03 0.22 0.15 0.01 0 10.60 0.10 0 0 0 0 0 0 800 30 

max. 225 0.41 1.57 0.56 0.13 0.21 21.06 10.16 4.69 0.02 0.29 0.19 1.05 0.04 990 480 

distribution good good good good mean mean mean mean mean poor poor poor good poor mean good 

4.2. Construction of base artificial neural networks

4.3.  Optimization of artificial neural network 
using genetic algorithm

4.4.  Construction of the artificial neural 
networks using automatic designer 
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Table 2.  

Parameters of non-optimized artificial neural networks.  

v
ar

ia
b

le
 

MLP 

network 

architecture 

training set validation set testing set 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

R0,2 17-3-1-1 21.13 0.58 0.82 18.59 0.52 0.85 20.69 0.51 0.86 

Rm 17-5-1 15.03 0.26 0.97 14.84 0.25 0.97 16.75 0.29 0.96 

A5 17-4-1 3.38 0.69 0.72 3.36 0.66 0.75 3.77 0.72 0.70 

Z 17-7-1 4.24 0.56 0.83 4.53 0.56 0.83 4.71 0.69 0.74 

HB 17-6-1 7.16 0.47 0.88 7.52 0.53 0.85 6.52 0.47 0.88 

Table 3.  

Parameters of artificial neural networks build with use of automatic designer. 

v
ar

ia
b

le
 

MLP 

network 

architecture 

training set validation set testing set 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

R0,2 13-8-1 20.81 0.55 0.84 19.54 0.51 0.86 19.45 0.51 0.86 

Rm 8-4-1 17.35 0.30 0.95 16.55 0.27 0.96 18.18 0.30 0.95 

A5 7-1-1 3.11 0.66 0.75 3.20 0.67 0.74 3.58 0.71 0.71 

Z 9-7-1 4.53 0.56 0.83 4.27 0.52 0.85 4.59 0.58 0.82 

HB 6-14-1 7.83 0.58 0.82 8.96 0.62 0.78 7.72 0.55 0.84 

Table 4.  

Parameters of artificial neural networks optimized with use of genetic algorithms.  

v
ar

ia
b

le
 

MLP 

network 

architecture 

training set validation set testing set 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation

ratio 

Pearson 

correla- 

tion 

R0,2 12-4-1 19.62 0.52 0.85 17.41 0.44 0.90 17.65 0.45 0.89 

Rm 12-8-7-1 16.68 0.29 0.96 16.11 0.27 0.96 17.88 0.30 0.95 

A5 15-9-5 3.06 0.62 0.78 3.29 0.66 0.75 3.52 0.66 0.75 

Z 12-5-1 4.06 0.54 0.84 3.95 0.52 0.85 4.06 0.54 0.84 

HB 12-6-1 5.93 0.45 0.89 7.61 0.52 0.85 6.51 0.47 0.88 

5. Modelling results discussion 

Comparison between mean absolute error for base, 

automatic designed and optimised artificial neural networks 

(testing set) is introduced in Figure 2. Comparison between 

Pearson correlation for base, automatic designed and 

optimised artificial neural networks (testing set) is 

introduced in Figure 3.  

Analysis of regression statistics of optimised artificial 

neural networks builded for prediction of yield strength 

5.  Modelling results discussion
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R0,2showed, that the best performance has the optimised 

network with the smallest average absolute error and 

deviation ratio. Also Pearson correlation for this network 

achieves peak value. 

In case of tensile stress Rm genetic algorithm has not 

advised with assigned task, just as automatic designer. The 

best regression statistics has the base artificial neural network. 

For the relative elongation A5 regression analysis shows 

that the best performance have the artificial neural network 

optimised with use of genetic algorithm. In comparison 

with the base network, it has a lower Pearson correlation 

and deviation ratio in validation set, but for all other sets 

regression statistics are similar or better parameters that are 

set to be higher than the ratios of other collections of the 

core network. 

Neural network optimized for the relative contraction 

Z has the best regression statistics for all sets, slightly 

better than statistics of the other networks. Its another 

advantage is the smallest number of variables. 

Regression statistics for base and optimized artificial 

neural networks build for prediction of Brinell hardness 

HB are very similar. Deterioration of statistics for a 

network constructed using an automatic designer is due to 

the rejection of a large amount of input variables. 

Fig. 2. Comparison between mean absolute error for base, 

automatic designed and optimised artificial neural networks 

(testing set) 

Fig. 3. Comparison between Pearson correlation for base, 

automatic designed and optimised artificial neural networks 

(testing set) 

Table 5.  

Chemical composition, shape and heat treatment conditions of examined stainless steels used in verification 

sample
Diameter

[mm] 

Chemical composition [%] Normalising 

C Mn Si P S Cr Ni Mo W V Ti Cu Al Temp. [°C] Time [min] medium

1 41 0.19 1.53 0.40 0.02 0.01 11.22 0.91 0.15 0 0 0 0.23 0.10 880 270 

- air 2 131 0.25 1.47 0.28 0.02 0.01 11.58 0.10 0 0 0 0 0 0.02 920 80 

3 57 0.41 0.89 0.31 0.01 0.02 15.31 1.01 0.18 0.01 0.02 0.09 0.3 0.04 800 210 
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Table 6. 

Comparison between measured and predicted mechanical properties of examined stainless steels 

sample model R0.2 Rm A5 Z HB 

  measured predicted measured predicted measured predicted measured predicted measured predicted

1

base 

379

380

583

583

30.7

31.9

46.3

46.9

158

160

automatic 378 583 30.3 43.9 157 

optimised 379 581 31.6 46.0 158 

2

base 

372

368

569

570

19.1

20.4

55.9

54.4

153

156

automatic 369 581 22.8 58.7 163 

optimised 372 572 18.5 55.7 151 

3

base 

333

362

553

553

30.6

29.9

67.8

42.8

144

143

automatic 342 555 31.0 61.6 147 

optimised 334 542 30.5 68.1 146 

6. Experimental verification

For verification purposes, an experimental set of three 

ferritic stainless steel samples has been developed. Their 

chemical composition and normalisation parameters are 

introduced in Table 5. To exclude the possibility of 

adjusting the artificial neural network only to the products 

of one manufacturer's material vectors, verification 

samples were collected from a different manufacturer. 

Samples, produced from these types of steel, were 

examined in order to obtain verification vectors. To 

minimize differences between training and verification 

data, material researches has been performed in the same 

way and using the same equipment, that were used in the 

main researches. The results obtained experimentally in a 

real laboratory have been compared with those obtained 

from computational models. All are introduced in Table 6. It 

was found, that all estimated results are correct for all 

examined steel samples. Differences among predicted and 

measured values of mechanical properties are very small and 

predicted results did not exceed the artificial neural network 

tolerance values in all models for corresponding property.

Summary 

The aim of this study was to optimize artificial neural 

networks used to predict the mechanical properties of 

rolled ferritic stainless steels after normalization. Artificial 

neural networks were optimized with use of genetic 

algorithm to achieve better regression statistics. 

Optimization, except of tensile strength Rm case, has 

allowed the development of artificial neural networks, 

which either showed a better or comparable result from 

base networks, and also have a reduced number of input 

variables. As a result, in computational models constructed 

with use of these networks the noise information is 

reduced. Results of computational researches performer 

with use of these models were fully verified by experiment 

conducted in a real laboratory. 

Additional information 

Selected issues related to this paper are planned to be 

presented at the 22nd Winter International Scientific 

Conference on Achievements in Mechanical and Materials 

Engineering Winter-AMME’2015 in the framework of the 

Bidisciplinary Occasional Scientific Session BOSS'2015 

celebrating the 10th anniversary of the foundation of the 

Association of Computational Materials Science and 

Surface Engineering and the World Academy of Materials 

and Manufacturing Engineering and of the foundation of 

the Worldwide Journal of Achievements in Materials and 

Manufacturing Engineering.  
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