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ABSTRACT

Purpose: The paper presents the possibilities of using artificial intelligence for the 
prediction of sulphur content in hot metal produced in blast furnace.

Design/methodology/approach: Three blast furnaces in ArcelorMittal, Unit in Dąbrowa 
Górnicza, provided the data for the model construction. The data reflect a number of 
variables, which describe the blast furnace process.

Findings: : Materials research performed with the use of data mining and neural networks 
is consistent with the results obtained during the real research in a real laboratory. The 
obtained results show that the construction of such neural networks is practical. There is 
a strong correlation between predicted value and real value.

Practical implications: The presented model can be used in the industrial practice as 
an additional tool for blast furnace and steel plant operators.

Originality/value: Prediction of sulphur content in hot metal at the stage of adjusting hot 
metal process parameters.
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METHODOLOGY OF RESEARCH

1. Introduction 

The use of Artificial Intelligence in environmental 

modelling has increased, together with recognition of its 

potential. Prediction of materials properties is extremely 

useful. Different models are being applied in a real world 

and industrial problems, from functional prediction and 

system modelling to pattern recognition engines and robust 

classifiers. Computer simulations became more effective 

and they started to assist in experiments or manufacturing. 

The escalating cost of materials testing in terms of money 
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and time for critical components in some industry fields 

increases the need for an effective, fast, and cheap research 

method [1-4]. 

Models help engineers build better products and 

improve their understanding of the process. They clear the 

way for predicting the mechanical and physical properties 

of materials. They could be a tool for systematic parameter 

studies in the optimum design of composite materials for 

specific applications. Such a solution can also be used for 

building the adaptive systems. Smart home systems are 

another example of using artificial neural network. They 

are aimed at reducing the power wastage [5-7]. 

These days a demand for steel is higher than ever. Fast 

technological progress stimulates a demand for steel in an 

automotive and building industries. Customer expectations 

are continuously increasing, they motivate the steel 

industry to follow the line of a constant development and 

innovation, implementation of a new or significantly im-

proved production or delivery method [8]. 

Blast furnace process includes numerous complicated 

mechanical, thermal and chemical reactions. The process 

complexity, number of variables and continuously 

changing temperature in a blast furnace are the main 

reasons, for which a development of mathematical model is 

extremely complicated [9]. 

Neural networks is a tool, thanks to which modelling of 

processes – whose correlations have not been completely 

examined so far – is possible. The ability of artificial neural 

networks to learn and approximate relationships between 

input and output are decoupled from the size and com-

plexity of the problem. Actually, as relationships based on 

inputs and outputs are enriched, approximation capability 

improves [4, 10, 11]. 

2. Material  

The purpose of blast furnace is to chemically reduce 

and physically convert iron oxides into liquid iron called 

hot metal. Hot metal makes an input charge for the Basic 

Oxide Furnace (BOF). Hot metal is an alloy of iron and 

carbon and other elements, where the carbon content 

amounts to ca. 4%. Hot metal is breakable and not plastic, 

therefore it cannot be a subject to mechanical working. Hot 

metal chemistry has been shown in Table 1. Sulphur is 

usually considered to be very impurious that must be 

eliminated from the blast furnace process. It is a common 

practice to control the sulphur content with a slag basicity 

and also with a carbon content, because the correlation is 

so strong. Most of the sulphur comes to the blast furnace 

from coke, where it is bound as organic sulphur and as FeS. 

Sulphur circulation has been shown in a Table 2 [9, 12].  

In a blast furnace charging process batches of charge 

material are typically loaded in a cyclical sequence into the 

furnace from the top hoppers, using a top charging system. 

A top charging system currently used in modern BFs 

consists of two hoppers into which coke and sinter are 

loaded. Blast furnace is a type of a shaft furnace; each 

segment of the furnace – going from the top to the bottom – 

is characterized with its own geometry. It is connected with 

processes, which take place inside the BF (Fig. 1) [9, 13]. 

Modern blast furnaces are the refinement of traditional 

furnaces, but equipped with instruments and control 

architecture. The most important parts of the production 

process are the operation and control of blast furnace in 

terms of controlling the internal temperature at various 

segments and monitoring the impurity levels online [12]. 

BF charge materials (mix of sinter, iron ore, coke and 

fluxes) are charged into the top of the shaft. Incorrect 

charge distribution disturbs a BF operation and reduces hot 

metal output. A blast of heated air and also, in most 

instances, a gaseous, liquid or powdered fuel are introduced 

through openings at the bottom of the shaft just above the 

hearth crucible. The heated air burns the injected fuel and 

much of the coke is charged in from the top to produce the 

heat required by the  process and to provide reducing gas, 

which removes oxygen from the ore. The reduced iron 

melts and runs down to the bottom of the hearth. The flux 

combines with the impurities in the ore to produce slag, 

which also melts and accumulates on top of the liquid iron 

in the hearth [9, 12]. 

The blast furnace process starts when hot blast is blown 

into blast furnace via tuyeres at a temperature up to 

1200°C. Hot blast burns the fuel, which is accumulated in 

front of the tuyeres. That burning generates a very hot 

flame and is visible through the peepholes as the raceway 

[13, 14]. 

Coke is the main source of heat (Eq. 1, 2) in the blast 

furnace and is burned in the raceways, in a BF hearth.  

C + O2 = CO2 (1) 

CO2 + C = 2CO (2) 

Combustion or decomposition products are: CO2, CO, 

H2 and N2. In a coke burning process a high amount of heat 

is released and a temperature goes up to 2000oC. The 

burning process in raceways effects in a constant descent of 

burden from the BF top downwards. Burning of coke in  

a hearth modifies the character and speed of a burden 

descent, which also depends on a gas flow distribution and 

heat exchange between the burden and gas [9, 15-17].  

2.  Material
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Table. 1. 

Hot metal chemistry 

Chemistry [%] 

 Si Mn P S 

Min 0.250000 0.110000 0.070000 0.008000 

Max 1.000000 0.470000 0.126000 0.027000 

Mean absolute error 0.524298 0.246741 0.096668 0.016340 

Median 0.510000 0.250000 0.098000 0.016000 

Standard deviation 0.122081 0.055533 0.008787 0.004027 

Kurtosis -0.110987 0.072629 0.232914 -0.328165 

Table 2. 

A typical sulphur balance in  blast furnace 

Sulphur in [kg/tHM]  Sulphur out [kg/tHM]  

Pellets 0.14 Hot metal 0.56 

Slag formers 0.52 Slag 3.74 

Coke 2.31 BF dust 0.35 

Oil 1.92 Balance 0.24 

Total 4.89 Total 4.89 

Sulphur enters the blast furnace mainly as the coke 

content and is released into a blast furnace gas stream as 

H2S or a gaseous compound of carbon monoxide and 

sulphur (COS), when the coke is burned (Eq. 3) [12]. 

FeO + COS = FeS + CO2 (3) 

Sulphur which combines with iron must be removed at 

a very high temperature that exists in the hearth. It is done 

by reduction of iron sulphide in the presence of a basic 

flux, such as lime (Eq. 4) [12]. 

FeS + CaO +C = CaS + Fe + CO (4) 

The amount of removed sulphur depends on the tempe-

rature in a hearth and the slag volume [12]. 

3. Artificial neural networks (ANNs) 

Artificial neural networks have been applied to predict 

many complex problems. They have been inspired by brain 

modelling studies. Implementations in a number of 

application fields have been presented and brought ample 

rewards in terms of efficiency and ability to solve complex 

problems [18].  

While constructing the model, numerical coefficients, 

called the weights, which are equivalent to the amount of 

substance released once at particular synapses, can be 

attributed to the cell inputs. If the weights are real, positive 

numbers, then a cell is activated; if the weights are 

negative, neuron activation is inhibited by other synapses. 

If the activation-inhibition balance is negative, a cell 

returns to the initial state and no change can be observed at 

its output [9, 11]. 

Fig. 1. Blast furnace (BF) 

3.  Artificial neural networks (ANNs)
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The most commonly used neural network confi-

gurations are known as multilayer perceptrons. In the 

structure each neuron output is connected to every neuron 

in subsequent layers connected in a cascade, with no 

connections between neurons in the same layer.  

Neurons are most often arranged in layers. A neural 

network has at least two physical components, namely, the 

processing elements and the connections between them. 

The processing elements are called neurons, and the 

connections between the neurons are links. Every link has  

a weight parameter associated with it. Those connections 

make the links, along with information, which is trans-

ferred in a network. Each neuron receives a stimulus from 

the neighboring neurons connected to it, processes the 

information, and produces an output. Neurons that receive 

stimuli from outside of the network are called input 

neurons (input layer). Neurons whose outputs are used 

externally are called output neurons (output layer). Also 

there may be hidden layers between the layers mentioned 

above [9, 19, 20]. 

Every neuron model consists of a processing element 

with synaptic input connections and a single output. The 

signal flow of neuron inputs, xn, is considered to be 

unidirectional. The neuron output signal is given by the 

relationship F, which is illustrated in Figure 2. The choice 

of a function mostly depends on a type of data in a training 

set and a type of a network selected to solve the problem 

[21].  

Fig. 2. Artificial neuron model  

In order to use an artificial neural network for solving 

a given problem it is required to set the weights of inter-

neuronal connections for neurons in the adjacent layers. 

The weights setting consists in a multiple presentation of 

a simulated phenomenon set of patterns to the network. The 

neural network is controlled by setting and adjusting 

weights between links. 

Initial weights are usually a set at some random 

numbers and they are adjusted during neural network 

training [9].  

4. Methodology of modelling  

For the purpose of simulation the data including 2961 

rows have been collected. Initially in the structure of the 

analysed networks 25 input neurons were established, 24 

out of which referred to the blast furnace process and one 

referring to the hot metal chemistry data. Parameters have 

been shown in Table 3. A set of data has been selected in 

the period from January 1, 2001 to December 31, 2013. It 

represents all three blast furnaces in ArcelorMittal Poland, 

Unit in Dabrowa Gornicza. The models of artificial neural 

networks have been used to predict the S content in hot 

metal. 

The input data were randomly divided into three sets. 

The first group, making 50% of the whole, has been used 

for network training. The remaining two groups, 25% each, 

have been used for the network validation and testing. The 

training set was used for development of the neural 

network model, The validating set was used for checking 

the model during establishing the values of weights, and 

the testing set was used for verifying the model when the 

network training was completed. For data analysis for 

neural networks models` multilayer perceptron MLP, back 

propagation, conjugate gradient as a learning method were 

used [22]. 

A network quality has been validated by means of:  

• Absolute error between real values and values predicted 

by the model.  

• Standard deviation, which shows the distribution of 

a tested value  against a mean value. 

• Quotient of deviations is a measure which always takes 

non-negative values. In a very good model the measure 

reaches the value from 0 to 0.1. If the measure is greater 

than one, then the use of the constructed model is not 

warrantable. 

• Pearson’s correlation between the real value and values 

calculated with the use of the model. The closer to 1 the 

value is, the better the model reflects a tested process. 

Pearson linear correlation coefficient is a measure of 

the strength and direction of correlation. Correlation 

coefficient is calculated based on the formula:  

5. Results of modelling  

MLP networks have been used for the model 

development. In the process of programming the results, 

which significantly deviated from the mean have been 

rejected. In the next stage an optimum number of input 

4.  Methodology of modelling 

5.  Results of modelling  
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neurons and hidden neurons have been selected and many 

network architectures with different numbers of hidden 

neurons have been tested. Figures 3 to 6 present an output 

datum dependence upon two chosen input parameters. 

Figure 7 presents a comparison between predicted and real 

values for the best network. A mean error value, a quotient 

of standard deviations and a correlation have been pre-

sented in Table 4. The selected network is characterized  

by the lowest average absolute error and by the highest 

Pearson correlation coefficients.  

Table 4. 

Quality assessment coefficients of  the MLP 24-5-1 neural 

network 

Assessment  

coefficient 
Training Validating Testing 

Average absolute 

error  
0.0009 0.0010 0.0009 

Quotient of 

standard deviations 
0.2795 0.2733 0.2604 

Pearson correlation 

coefficient 
0.9601 0.9620 0.9656 

Fig. 3. Impact of CO and CO2 on the S content (Skip sinter 

9375 Mg, Sinter screenings 0 Mg, Pellets 0 Mg, Pellets 

screenings 0 Mg, Manganese ore 0 Mg, Fe concentrate  

0 Mg, BOF slag 118 Mg, Fluxes 36 Mg, PCI 0 Mg, Coke 1 

2704 Mg, Coke 2 0 Mg, Coke 3 0 Mg, Coke 4 103 Mg, 

IO/Coke load 3.34, F content in sinter 5.98%, Gas for 

intensification 250�103 m3, Hot blast pressure 3.44 kPa, 

Oxygen 23%, Top temperature 89°C, H2 2.4%, Gas 

calorific value 3377 kJ, Hot metal temperature 1411°C) 

Table 3. Input parameters 

Range Parameters 

 Skip sinter [Mg] Sinter screenings [Mg] Pellets [Mg] Pellet screenings [Mg] Manganese ore [Mg] 

Min 1206 0 0 0 0 

Max 12474 937 3712 814 1272 

 Fe concentrate [Mg] BOF slag [Mg] Fluxes [Mg] PCI [Mg] Coke 1 [Mg] 

Min 0 0 0 0 301 

Max 435 382 232 679 3499 

 Coke 2 [Mg] Coke 3 [Mg] Coke 4 [Mg] IO/Coke load 
Fe content in sinter 

[%] 

Min 0 0 0 0.678 52.05 

Max 790 837 665 4.47 60.02 

Gas for intensifica-

tion [m
3�103

] 

Hot blast pressure 

[kPa] 

Oxygen  

[%] 

Top temperature  

[°C] 

CO2  

[%] 

Min 0 2.20 21.00 23.00 16.10 

Max 755 4.00 27.00 180 23.9 

 CO [%] H2 [%] 
Gas calorific value 

[kJ] 

Hot metal 

temperature [°C] 

S content in hot 

metal [%] 

Min 19.50 0.50 2848.00 1327.00 0.008 

Max 28.5 8.2 4722 1513 0.03 
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Fig. 4. Impact of hot metal temperature and IO/Coke load 

on the S content ((Skip sinter 9375 Mg, Sinter screenings  

0 Mg, Pellets 0 Mg, Pellets screenings 0 Mg, Manganese 

ore 0 Mg, Fe concentrate 0 Mg, BOF slag 118 Mg, Fluxes 

36 Mg, PCI 0 Mg, Coke 1 2704 Mg, Coke 2 0 Mg, Coke 3 

0 Mg, Coke 4 103 Mg, F content in sinter 5.98%, Gas for 

intensification 250�103 m3, Hot blast pressure 3.44 kPa, 

Oxygen 23%, Top temperature 89°C, CO2 22.3%, CO 

21,7%, H2 2.4%, Gas calorific value 3377 kJ) 

Fig. 5. Impact of hot metal temperature and PCI on the S 

content (Skip sinter 9375 Mg, Sinter screenings 0 Mg, Pel-

lets 0 Mg, Pellets screenings 0 Mg, Manganese ore 0 Mg, 

Fe concentrate 0 Mg, BOF slag 118 Mg, Fluxes 36 Mg, 

Coke 1 2704 Mg, Coke 2 0 Mg, Coke 3 0 Mg, Coke 4 

103 Mg, IO/Coke load 3,34, F content in sinter 5.98%, Gas 

for intensification 250�103 m3, Hot blast pressure 3,44 kPa, 

Oxygen 23%, Top temperature 89°C, CO2 22.3%, CO 

21.7%, H2 2.4%, Gas calorific value 3377 kJ) 

Fig. 6. Impact of IO/Coke load and top temperature on the 

S content (Skip sinter 9375 Mg, Sinter screenings 0 Mg, 

Pellets 0 Mg, Pellets screenings 0 Mg, Manganese ore 

0 Mg, Fe concentrate 0 Mg, BOF slag 118 Mg, Fluxes 

36 Mg, PCI 0 Mg, Coke 1 2704 Mg, Coke 2 0 Mg, Coke 3 

0 Mg, Coke 4 103 Mg, F content in sinter 5.98%, Gas for 

intensification 250�103 m3, Hot blast pressure 3.44 kPa, 

Oxygen 23%, CO2 22.3%, CO 21,7%, H2 2.4%, Gas 

calorific value 3377 kJ, Hot metal temperature 1411°C) 

Fig. 7. Comparison between a real value and predicted 

value for the network MLP 24-5-1 

6. Conclusions 

Artificial neural networks are a very good tool for the 

modelling of various dependences. The neural network 

model developed from experimental data can be used  

to predict a sulphur content in hot metal. The overall 

6. Conclusions
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prediction error is about 0.1% for a predicted value of S 

content in hot metal as compared with the measured value. 

The output parameter for the network was the S content in 

hot metal and the input parameters were the variables, 

which describe the BF process. The results show the 

effectiveness of the method and more network impro-

vements are still possible. During the process modelling 

operation a correct selection of input data is of a primary 

importance.  

Additional information 

Selected issues related to this paper are planned to be 

presented at the 22nd Winter International Scientific 

Conference on Achievements in Mechanical and Materials 

Engineering Winter-AMME’2015 in the framework of the 

Bidisciplinary Occasional Scientific Session BOSS'2015 

celebrating the 10th anniversary of the foundation of the 

Association of Computational Materials Science and 

Surface Engineering and the World Academy of Materials 

and Manufacturing Engineering and of the foundation of 

the Worldwide Journal of Achievements in Materials and 

Manufacturing Engineering. 
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