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ABSTRACT

Purpose: The study aims to predict elastic properties of composite laminated plates from 
the measured mechanical properties.
Design/methodology/approach: Elastic constants of laminates and damping properties 
have been determined by using an identification procedure based on experiment design, 
and multi-level theoretical approach.
Findings: The present paper is the first attempt at proposing a novel adaptive procedure to 
derive stiffness parameters from forced sandwich plate’s vibration experiments.
Research limitations/implications: In the future the extension of the present approach 
to sandwich plates with different core materials will be performed in order to test various 
experimental conditions.
Practical implications: Structures composed of laminated materials are among the most 
important structures used in modern engineering and especially in the aerospace industry. 
Such lightweight and highly reinforced structures are also being increasingly used in civil, 
mechanical and transportation engineering applications.
Originality/value: The main advantage of the present method is that it does not rely 
on strong assumptions on the model of the plate. The key feature is that the raw models 
can be applied at different vibration conditions of the plate by a suitable analytical ore 
approximation method
Keywords: Computational material science; Composite materials; Laminated plates; 
Elastic constants;  Identification
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ANALYSIS AND MODELLING

1. Introduction 

Since the late 1950’s many papers have been published 
on the vibration of sandwich structures [1-9]. All the 
models discussed so far are based on the following 
assumptions: (a) the viscoelastic layer undergoes only 

shear deformation and hence the extensional energy of the 
core is neglected; (b) the face sheets are elastic and 
isotropic and their contribution to the shear energy is 
neglected; and (c) in the face-sheets plane sections remain 
plane and normal to the deformed centerlines of the face-
sheets. However, as the frequency increases the results 
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calculated from these models disagree strongly with 
measurements.  

The simple laminate theories are most often incapable 
of determining the 3-D stress field in the lamina. Thus, the 
analysis of composite laminates may require the use of 
laminate independent theory or a 3-D elasticity theory. 
Exact three-dimensional solutions [7,8] have shown the 
fundamental role played by the continuity conditions for 
the displacements and the transverse stress components at 
the interfaces between two adjacent layers for an accurate 
analysis of multilayered composite thick plates. Review 
and assessment of various theories for modeling sandwich 
composites may be found in [10,11]. Further, these 
elasticity solutions demonstrated that the transverse normal 
stress plays a predominant role in these analyses. However, 
accurate solutions based on the three-dimensional elasticity 
theory are often intractable.  

The purpose of our study is the elaboration of a stable 
identification algorithm allowing one to uniquely determine 
the elastic modules, including the transverse ones. The 
problem of identification necessarily includes the planning 
of experiments, the construction of a calculation model, 
and the identification schemes themselves. In this study, 
the construction of the model is considered in two plans: 
first, adaptation of the model to the kind of specimens and 
experimental equipment employed and, second, adaptation 
of the model to the identification scheme. The reliability of 
the results obtained was estimated by analyzing the 
robustness of the calculation schemes suggested (Tab. 1). 

Table 1. 
Calculation scheme 
verification 
of the model

verification of 
the identification 

scheme

identification analysis of 
reliability 

(postanalysis)

The verification of the model was considered. New 
combined criteria of identification — schemes averaged 
over the calculation results for a homogeneous beam and 
for a sandwich with a core identical to the homogeneous 
beam and rigid outer layers are considered. The error 
function is chosen as the sum of error functions for the 
homogeneous beam, and for the sandwich. In the present 
study, combined identification schemes making it possible 
to unequivocally determine the transverse modules and 
Poisson ratio are suggested. Based on the classical scheme 
of three-point bending of a beam and refined calculation 
schemes, a method is elaborated for determining the 
elasticity characteristics of a homogeneous beam and of the 
face layers and core of a sandwich beam by minimizing the 
deviations of experimental deflections of the beams from 
calculated ones. It is shown that, for an adequate 

identification of the characteristics on the basis of refined 
models, it suffices to use second-order approximations 
across the thickness of layers of sandwich beams and third-
order for beams with the soft coverage. The elastic modules 
were also determined from measured vibration eigen-
frequencies of the beams. 

The identification of mechanical characteristics of 
thin-walled layered elements is a rather complicated 
problem. Many studies are dedicated to this problem, both 
theoretical, with a mathematical substantiation of 
algorithms, and experimental, where one or several 
parameters are determined. An adequate description of the 
mechanical properties of layered thin-walled elements is based 
on the construction of a refined theoretical model [12-18] and 
on the choice of a testing scheme making it possible to 
uniquely determine some modulus or a group of moduli. 

The method of static experiments used in [19] allows one 
to separately find the shear modulus of an orthotropic 
composite from tension tests at a certain angle to its 
symmetry axes. In [20], a more general approach with a 
specific choice of the strain field is suggested, which 
undoes the contribution of all components of the strain 
tensor except that needed for determination of a certain 
modulus. This enables one to theoretically determine each 
elastic modulus separately. But there still remains the ques-
tion of practical realization of such strain fields in actual 
experiments. Experimental schemes for determining the 
elastic moduli by using plates eigen-frequencies are known 
[21,22]. A parametric identification of vibrating systems is 
the process of finding mathematical and parameterised 
models for system, which is based on measured excitation 
and/or response signals is proposed in [23]. In normal 
cases, the excitation is the force, the response signal – the 
vibration displacement, velocity or acceleration. However, 
they are unsuitable for determining the elastic modulus 
along the normal to a plate. In [24-26], an adaptive 
algorithm on the basis of generalized kinematic 
approximations and the classical Galerkin method for an 
elliptic system of equations of the linear theory of elasticity 
is advanced. The elastic moduli are identified by 
comparing the theoretically determined eigen-frequencies 
with experimental data. Contrary to the present study, these 
investigations do not pay sufficient attention to the 
determination of transverse moduli. 

2. Some aspects of beam modeling 

Various high-order displacement models have been 
developed in the literature by considering combinations of 
displacement fields for in-plane and transverse 
displacements inside a mathematical sub-layer. In order to 
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obtain more accurate results for the local responses, 
another class of laminate theories, commonly named as the 
layer-wise theories, approximate the kinematics of 
individual layers rather than a total laminate using the 2-D 
theories [24-26]. These models have been used to 
investigate the phenomena of wave propagation as well as 
vibrations in laminated composite plates. Numerical 
evaluations obtained for wave propagation and vibrations 
in isotropic, orthotropic and composite laminated plates 
have been used to determine the efficient displacement 
field for economic analysis of wave propagation and 
vibration. The numerical method developed in this paper 
follows a semi-analytical approach with an analytical field 
applied in the longitudinal direction and a layer-wise 
displacement field employed in the transverse direction. 
The goal of the present paper is to develop a simple 
numerical technique, which can produce very accurate 
results compared with the available analytical solution. The 
goal is also to provide one with the ability to decide upon 
the level of refinement in higher order theory that is needed 
for accurate and efficient analysis. 

Let us consider now such kinematic assumptions 
(U=Ue+Ud) for a symmetrical three-layered plate  
of thickness 2Hp (only cylindrical bending is considered):  
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Here ( )xkϕ , ( )xkγ – are apriory known coordinate 

functions (for every beam clamp conditions), e
iku

, e
ikw , e

iku , e
ikw – unknown set of parameters.  

By substituting Eqs. (1) ) into the following variation 
equation 

,)(
2

1

∫∫ ∫=
∂
∂

∂
∂−

∂
∂

∂
∂−++

t

t V S
xzxzzzzzxxxx UPdVdt

t
w

t
w

t
u

t
u δδρδρδετδεσδεσ (2) 

and also assuming single frequency vibration 
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we obtain the set of linear algebraic equations for the 
amplitudes [24-26]: 
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For a greater number of lamina this equation has the 
following form for each additional layer 
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 Here  )(nH  are the low bounds of the n -th layer, 
respectively. Matrix [ ]A  are found by double integration 
through the thickness and along the length of the beam.  
Note that, 1=N  and 2=N  represent the cases of 
symmetrical three- and five-layered plates, respectively.  

The corresponding frequency equation for the material 
with the viscous damping should be written such  

[ ] [ ] [ ] [ ] fUAUKUCiUM ==++− ωω 2  (5) 
This is the traditional frequency domain method which 

is normally used in linear elastic system investigations.  
These theories are flexible and its demonstrate good 

convergence results for various layer thickness, number 
and for different mechanical properties of layers. In most 
cases it is enough the 3-4 terms in approximations (1) thru 
the thickness of layers [24-26]. 

3. Experimental investigations

Beams made of plastic foams of trademarks 3715 and 
6718 (General Plastic, USA) and sandwich beams with 
CFRP load-carrying layers and a core made of the plastic 
foam of trademark 3715 were tested in three-point bending 
(see Fig. 1). The thickness of CFRP layers, made of a 
plain-weave fabric, was 0.5 mm, and the fibers were 
oriented along and across the layers. The three-layer beam 
had a rectangular cross section, length 0.6 m, width 0.028 m, 
and height 0.0264 m. The apparent density of the plastic 
foams of trademarks 3715 and 6718 was 240 and 277 kg/m3, 
respectively, and the weight per unit length of the sandwich 
was 0.207 kg/m. The beams were loaded stepwise. The 
maximum deflections were measured by dial gages with a 
scale-division value of 0.01 mm. The radii of cylindrical 
supports and the width of the loading indenter were 5 mm. 

Fig. 1. Loading scheme (a) and cross section (b) of a three-
layer beam 

3.	�Experimental investigations 
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Fig. 2. ν−1E  (a), ν−2E  (b), ν−G  (c), 21 EE −  (d), GE −,1 (e) and 2EG − (f) maps (in statics) 

The experiment set up for dynamic investigation 
includes: a B&K Pulse System (Sound & Vibration Multi-
analyzer), laser vibrometer, sample, shaker and power 
amplifier. These results are kindly given by prof. M. 
Crocker on the basis of works of his graduate students 

Verification of  identification  

The identification of elastic moduli by the results of 
static tests is realized by the method of minimization of the 
error function (6): 

∑
−

=∆
PN

i i

ii

w
ww

exp

exp

,   (6) 

which is the relative difference, averaged over all loads, 
between the deflections and determined experimentally and 
theoretically on the basis of refined model (1-5), 
respectively. 

To verify the identification scheme used, we will 
consider additionally several maps of error function which 
include the transverse modulus and Poisson ratio. The error 
function is defined as the average of differences between the 
calculated static deflections iw i of a homogeneous beam in 
specified ranges of 2E and ν  and the deflections 

)0(
iw calculated with average values 002010 ,,, νGEE and 

0ν (6). 

Fig. 2 depicts some maps of the error function 0∆ in 
pairs with the transverse moduli. Similar results were also 
obtained in dynamic tests.  

4.	Verification of  identification  
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Fig. 3. Map for parameters 21, EE , beam thickness 
H=0.0254 m: (a) -length L=0.18, 0.12, 0.06 m; (b) -length 
L=0.09, 0.06, 0.03 m 

As seen from data of the Fig. 2, in the identification 
scheme used, the transverse modulus and coefficient cannot 
be determined unequivocally. Theoretically, they can be 
found from static tests by reducing the minimum length of 
beam span to two or three thicknesses of the beam. 

Let us consider the three-point test by simultaneously 
use of beams of various lengths L, 2L/3, L/3 (Fig.3 - beam 
thickness H=0.0254 m). The difference function is: 
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But, at such spans, which are practically comparable 
with beam thickness, the local deflections in supports  

must be taken into account. In dynamics, a considerable 
improvement in identification of the moduli is possible 
only in a range of sufficiently high frequencies. Such high-
frequency measurements are rather complicated too. The 
difficulties in determining the transverse moduli can be 
explained if the vibration forms of the beam are examined 
(Fig. 4). One can notice that only at a frequency of about 
10-15 kHz does the vibration wavelength approach the 
minimum length of a beam in static tests at which it is 
possible to separate the moduli 1E  and 2E .

In Fig. 3 little influence on mechanical properties of 
beam can be noticed, that as for dynamic so for static tests 
some modules. For dynamic tests only shorter beams or 
high frequency numerical experiments are informing (Fig. 
3b). For static tests only shorter beams give the variance in 
the difference function. It serves as basis for the following 
algorithm of identification of the modules: identification of 
the longitudinal module 1E  on the basis of testing enough  

long and thin beams and determination of transverse 
modules on the basis of testing of short beams or use of 
information about eigen-frequencies of higher ran 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-400

0

400 A
f1 -  1100 Hz
 f2 -  2700 Hz
 f3 - 15700 Hz

L, m

Fig. 4. Vibration modes of a homogeneous beam at f1 = 1.1 
(1), f2 = 2.7 (2), and f3 = 15.7 (3) kHz 

5. Combined identification 

Let us consider new combined criteria of identification 
- schemes averaged over the calculation results for a 

5.	Combined identification  
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homogeneous beam and for a sandwich with a core 
identical to the homogeneous beam and rigid outer layers. 
The error function is chosen as the sum of error functions 
for the homogeneous beam, C∆ , and for the sandwich, 

S∆ , in static tests 
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or as the sum of dynamic discrepancies for the 
homogeneous beam, DC∆ , and the sandwich, Df∆ , 
namely 
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Here, α and β are the weight factors. They were 
determined by numerical experiments during the 
minimization process and roughly corresponded to an equal 
contribution of both summands. Combined static-dynamic 
criteria, for example, DS ∆+∆=∆ can also be employed.  

In [22], it is proved that function (6) is convex.  
However, we should note that, for some parameters, its 

level lines are excessively extended (see Fig. 3a-d). In the 
case of application of the combined scheme of 
identification, they become more convex (see Fig. 5). 

Let us consider the same maps of parameters for a 
sandwich in which the mechanical characteristics of core 
are the same as those of a homogeneous beam. Here, the 

ν−2E and ν−G maps for the inner layer are still 
nonconvex, but the 21 EE − maps for the core and the 

fGv − , f
xzEv − , and f

zzEv − maps become convex  

(Fig. 5). 
As seen from the data of Fig. 5, additional 

information can be used for an unequivocal determination 
of the transverse modulus 2E  and Poisson ratio v  of the 
core and, simultaneously, of the moduli of outer layers. For 
this, it is sufficient that the equal-value level lines of the 
error function be convex and contract to a point as the error 
decreases. If, by some criteria, the maps (level lines) are 
striplines (see Fig. 2a-d), it is necessary to search for 
variants where, with other schemes of experiments, they 
become convex. In this connection, it is expedient to 
consider combined criteria of identification that take into 
account this information. 
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Let us analyze the identification of the moduli in the 
case of simultaneous use of data on a homogeneous beam 
and a beam with a core (material 3715). The error function 
is taken in form (7), with the moduli fE , cG , cE1  and cE2

as the parameters to be optimized. The other moduli of the 
sandwich are assigned approximately because of their weak 
influence on the dynamic and static properties of layered 
plates. Fig. 6 illustrates the identification processes. 

Let us consider five variable parameters in the 
combined identification scheme, fE , cG , cE1 , cE2 , and 

ν . Here, we will additionally consider the Poisson ratio ν
of the homogeneous beam. The processes of identification 
of the moduli according to different schemes are illustrated 
in Fig. 7.

We should note that, in the combined identification 
scheme, the Young’s modulus 2E and Poisson ratio ν  are 
also determined. The final results of the process of 
identification of the moduli in the different schemes are 
enclosed in ovals. As seen from data [26], the identified 
Young’s 1E and shear G moduli for materials 3715 and 
6718 coincide, accurate to 1.5%, with data of the General 
Plastic company (USA), while the Young’s modulus 2E
differs by 6-11.5%. The accuracy of agreement with the 
modulus 2E  determined with the help of combined 
criterion (7) in bending of a three-layer beam makes 1%. 
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6. Conclusions  

 In the present study, theoretical models for 
investigations into the vibrations and damping of layered 
composite plates are developed. A rational approximation 
of the field of displacements is established, which al lows 
one, at a small number of parameters, to predict the 
dynamic behavior of a beam. A new procedure for 
determining the parameters of the dynamic rigidity of 
three-layer plates is suggested, which was used to find the 
equivalent values of elastic moduli for a Timoshenko 
beam. We should note that the method presented does not 
require rigorous assumptions concerning the plate model. 
In this study, based on the multilevel theoretical approach 
described and a combined procedure of identification for 
some composite plates, their elastic moduli will be 
determined. 
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