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ABSTRACT

Purpose: The paper presents results of structural and magnetic properties of Fe78Si11B11 
and Fe78Si9B11Y2 alloys in the form of ribbons. The effect of addition of yttrium on the 
structure and magnetic properties was investigated.
Design/methodology/approach: The investigated samples were prepared in the form 
of ribbons using the melt-spinning method. The material structures were investigated using 
X-ray diffractometry, Mössbauer spectroscopy and scanning electron microscopy. The 
magnetic properties were studied using using vibrating magnetometer.
Findings: Samples were fabricated using rapid cooling at a rotating copper wheel. Images of 
fractures of investigated samples obtained by decohesion using same magnifications are similar. 
The distinct vein like structure or the husk structure are not visible thought they are typical of 
amorphous and nanocrystalline materials with a high degree of internal stress. Mössbauer 
spectrum is typical as for amorphous materials that are ferromagnetic. It consists of six lines 
forming a Zemman's sextet. The hyperfine induction field distribution obtained for this sample 
shows clearly separated two components: low- and high-field. After the introduction of 2% at. 
Y to the alloy Fe78Si11B11 in place of Si partial crystallization occurred. The shape of the initial 
magnetization curves is  similar and corresponds to materials with low effective anisotropy.
Originality/value: The paper presents some researches of the Fe-based bulk amorphous 
alloys obtained by the melt-spinning method 
Keywords: Amorphous alloy; Nanocrystalline alloy; Structure; Microstructure; Hysteresis 
loops
Reference to this paper should be given in the following way: 
K. Błoch, Structure and properties of amorphous and nanocrystalline Fe78Si11-xB11Yx (x = 0 or 2) 
alloys produced in a single production step using controlled parameters melt-spinning method, 
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1. Introduction 
 

In the present age, the most desirable and necessary for 
the further development of civilization medium is electrical 
current. Therefore, research into reducing its consumption 
and the reduction of losses during transmission are carried 
out within the best scientific centers and research 
institutions. In addition, they are also carried out research 
on developing new electrical goods, which in itself will 
show better properties than commercially applicable FeSi 
transformer sheets or copper wires [1-3]. There is no need 
to cite examples of where devices use mains electricity or 
modern-powered portable consumer electronics batteries. 
In the last half-century, many new groups of materials for 
use in electrical engineering and electronics were develo-
ped. One of the most promising groups of solid materials 
are amorphous and nanocrystalline alloys [4-7]. Such 
alloys are extensively studied to this day and apart from 
exceptional magnetic properties they also exhibit unique 
mechanical properties [8-14]. The first of these materials 
were taken in the '60 of XX century in the form of thin 
layers made by the process of evaporation [15]. However, 
their use has not been possible on a large scale because of 
the impossibility of forming and small volume. A method 
giving the opportunity to produce a solid sample free from 
surface medium and greater thickness was searched. As the 
author of this method for producing such samples H.S. 
Chen is considered [16]. He developed together with his 
colleagues unique method for its time involving the inje-
ction of liquified material on copper wheel rotating liquid 
metal stream. This method  which is based on a simple 
apparatus is used to this day. The liquid metal stream 
solidified on the copper wheel with speed 104-106 K/s  
[17-19]. The product obtained by this method generally has 
the shape of a tape or flakes of a thickness not exceeding 
100 mm [20-21]. Diagram showing the method of manu-
facturing amorphous strips are provided in Fig. 1. 

 

 
 

Fig. 1. The diagram showing the melt-spinning method [22] 

The liquid melt is cooled unidirectionally, which 
generates a different surface topography on both sides. Due 
to obtained such a high cooling rate, it was possible to 
produce samples without crystallization process during 
solidification. The transition from liquid to solid state 
taking into account the glass transition temperature can be 
characterized by TCP curve, which is shown in Fig. 2. 
 

 
 
Fig. 2. A schematic curve TCP describing the devitrifi-
cation process: Sx – the cooling rate of the liquid alloy on 
the drum, Sz – the cooling rate of the ribbon in the air, Sy – 
the critical cooling rate of a liquid, which achieves glass,  
tx – cooling time of liquid metal, Tg – glass transition 
temperature, Tm – superheat temperature of the alloy. 
 

A schematic TCP curve (Fig. 2) that describes the glass 
transition and the cooling curve of the liquid at a rate (Sx) 
substantially greater than the critical and the cooling time 
dependent on position of the TCP curve. If the cooling time 
of the strip on the outside side of the wheel would be too 
small to reduce the melt temperature below the temperature 
(Tg) then in the further ribbon would be cooled in air at  
a rate of (W), which is not capable of providing an 
amorphous state. This is shown in Fig. 2. Clearly it shows 
that devitrification liquid injected under argon pressure the 
melt is possible, when cooling time and cooling rate of this 
alloy, when the band leaves the surface of the copper 
wheel, allows to maintain the final temperature exceeding 
the glass transition temperature (Tg). The obtained alloys 
using the method of unidirectional cooling of the melt on  
a rotating copper wheel were characterized by amorphous 
structure, which in the case of alloys for use in electrical 
was then unacceptable. It was believed that because the 
magnetic properties and in particular the so-called soft 
magnetic properties are closely related to the crystal 
structure, for which it was believed that there is only  
a magnetic hysteresis loop. That misconception presented 
by Fisher and Koopman, when they watched magnetic 
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hysteresis loops for applied layers of Co-P, despite the 
absence of diffraction peaks for these compounds [23]. 
This belief was so strong that they didn't include 
examinations for amorphous materials, despite the very 
promising results. It was not until in 1960 Russian physicist 
Gubanow showed theoretically that the ferromagnetic order 
is not closely related to the crystal lattice [24]. This date is 
considered to be the beginning of modern group of 
electrotechnical materials, which are amorphous alloys. 
Such materials exhibit a high saturation magnetization, low 
losses on remagnetization and almost zero magnetostriction 
[25-26]. It was thought that those materials will alternate 
textured metal transformer cores and components for 
transformers and chokes. The conviction that lasted more 
than 20 years until the Japanese led by Suzuki presented to 
the world a different group of materials called nano-
crystalline materials [27]. Suzuki has shown that properly 
performed procedure for heat treatment of amorphous 
alloys leads to nanocrystallization [28]. Those observations 
made up for his first patent [27] for nanocrystalline mate-
rials use in electrical engineering. Since then an intensive 
research on these materials began, and methods of their 
obtaining [29-31]. Generally, it is assumed that nanocrystal-
line materials are produced by annealing of the amorphous 
materials [32-34]. Annealing process itself is fairly simple, 
but its design requires a series of preliminary studies and 
trials. The most common method is that proposed by 
Suzuki et al. This method consists of long-term annealing 
at a temperature well below the crystallization temperature. 
This process lasts a long time and is energy consumable. 
Another method of heat treatment is a short annealing at  
a temperature near crystallization. However, the reprodu-
cibility in preparation of crystallites of similar size is quite 
small. The basis for carrying out these thermal treatments is 
to know the value of the crystallization temperature (Tx), 
which is determined on the basis of an analysis of the heat 
flow curve as a function of temperature. Differential 
calorimetry curves give much more information that allow 
to describe the thermal stability of amorphous alloys and 
how they crystallization. For a complete description of the 
thermal stability of the amorphous alloy should specify the 
glass transition temperature (Tg), the temperature of the 
beginning of the crystallization (Tx), the peak temperature 
(T1), a softening temperature of the melt (Tm) and melt 
temperature (TI). Knowing these temperatures can be 
determined: the supercooled liquid temperature range  
∆Tx = Tx −Tg [35-39], reduced glass transition temperature 
Trg = Tg/Tm [35, 40] and Trg = Tg/Tl, ∆Tm The temperature 
range determined from the difference (= Tl − Tm) [35], the 
temperature of supercooling ∆Tl = Tl − Tx [43], the modi-
fied parameter ability to form glassy state (GFA) γm  

(= (2Tx −Tg)/Tl) [47], parameter γ = Tx/(Tg +Tl) [35] and 
parameter δ (= Tx/(Tl – Tg)) [43]. A completely different 
method of heat treatment which does not require know-
ledge of the above-mentioned temperatures and giving 
great hope to thermal processing method is the so-called 
impulse nanocrystallization [41]. It involves annealing the 
amorphous sample at temperatures well above the 
crystallization temperature, but for a very short period of 
time amounting to fractions of a second.  The author of this 
nanocrystallization method considered to T. Kulik from 
Warsaw University of Technology. However, any of the 
above methods requires at least one further treatment cycle 
in addition to the production process. There is, however, 
possible to fabricate nano-material in the form of a tape in  
a single production step [42]. To further characterize it the 
impact of three key parameters occurring in the manufa-
cture of tapes must be determined: the pressure that propels 
the liquid alloy on copper wheel, the linear velocity of the 
copper cylinder gap at the bottom of the crucible.  
A diagram for describing change in rotation speed of the 
copper wheel as a function of pressure is shown in Fig. 3.  
 

 
 
Fig. 3. Changing the rotation speed of the copper cylinder  
as a function of hypertension 
 

Boundary lines secreting area in Fig. 3 are selected 
from [43], and the dashed lines based on [44]. Such studies 
were conducted in Institute of Materials Science and 
Engineering of Warsaw University of Technology and the 
results are shown in Fig. 3. Black circles define the 
parameters for which it tapes of amorphous structure are 
done, and white space where you do not manage to obtain  
a spin glasses. The experiment was performed for constant 
linear velocity of the copper wheel (v = 32 m/s), the set 
temperature of heated alloy (Tm = 1200°) and the same 
diameter of the slots in a quartz capillary (0.22 mm). This 
means that the argon pressure of the ejecting molten alloy 
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Fig. 7. X-ray diffraction patterns with Rietveld analysis 
obtained for the investigated alloys: a) FeSiB, b) FeSi 
 

 
 

Fig. 8. Primary magnetization curves for the investigated 
alloys: a) FeSiB, b)  FeSiBY 

 
reducing the saturation magnetization, since it's volume 
fraction is small and the grain from which it is con-
structed is several nanometers.  

 
 

4. Conclusions 
 

Samples were fabricated using rapid cooling at a rota-
ting copper wheel. Obtained in this manufacturing 
technique cooling rate may be up to 106 K/s. Therefore, it 

is possible to partially freeze the specific phases in 
different areas of the samples.  

Samples obtained using this technology can be divided 
into three areas of cross section, although the obtained 
tapes usually had a thickness of about 35 µm. As the least 
variable in terms of chemical and topological order is the 
core of the tape, and as a subsurface layer should be 
considered planes to a thickness of several nanometers. 
Interesting in this technique is that, when forming the tape 
higher cooling rate is obtained on the outer side thereof, 
that is, the non-contact of the copper wheel. This means 
that even in the case of production of thin tape there is  
a certain temperature distribution during solidification. 
Additionally, this distribution is one direction heading to 
the surface of the copper wheel. This can cause pre-
segregation of alloy components, and even lead to partial 
separation of the individual components having various 
elementary cells. In the case of rapid cooling, the freezing 
of a melted solution of pure iron can be observed 
maintaining presence of all the unit cells types (γ, δ, α). 
Such is situation is observed in the case of an investigated 
alloy. During solidification of the melt a freeze of the high-
temperature phase γ−Fe occurred forming a thin film on  
a few nanometers with paramagnetic properties (Fig. 6). 
Confirmation of this result was also obtained in the surface 
where the only X-ray studies identified crystalline phase 
with fine grain: γ−Fe. An interesting fact is that the 
appearance of 13% paramagnetic phase had no impact on 
the reduction of the saturation magnetization, contrary 
there was quite the opposite effect. Most likely increase the 
magnetization of the sample with the paramagnetic phase is 
the result of increased structural order in terms of 
topological and chemical order related to an amorphous 
matrix. Rearrangement of atoms in the presence of a large 
radius Y are the reason for blocking of the atomic motion 
of smaller atoms over long distances and locally at the 
sample surface resulting from the copper wheel side what 
breaks the ferromagnetic interchange interactions. 
However, the entire volume of the alloy (excluding the 
surface layer) ferromagnetic interactions have strong 
influence on enhancing the value of saturation magneti-
zation. The arrangement of atoms in such areas is similar to 
the configuration of phase α-Fe and Fe0.91Si0.09 which 
contribute to the growth of the magnetization. 

In conclusion, it is often in the papers about the rapid 
cooled materials, studies of the structure and microstructure 
are made from the sample surface side, which can be 
misleading, as demonstrated in this work. It is therefore 
important to show existing traps in the description of the 
structure and properties of such alloys. 

4.	�Conclusions
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