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ABSTRACT

Purpose: The aim of the paper is to fabricate semi-transparent graphene oxide counter 
electrodes for dye-sensitized solar cells.
Design/methodology/approach: A thermal reduction is applied to decreased the 
amount of surface oxygen functionalities on graphene sheets. For this purpose thermal 
treatments in oven in 250°C and 500°C were used. Graphene oxide materials were mixed 
with PEDOT:PSS and then deposited on FTO glass by spin coating method. PEDOT:PSS 
was added to graphene oxide to increase conductivity and enhance film forming ability.
Findings: Ultraviolet-visible spectroscopy measurement was carried out to monitor the 
degree of oxidation for the graphene samples. It has been found that annealing of graphene 
oxide counter electrodes under inert atmospheres enable a better ordering of graphene 
oxide films and also cause losing an oxygen functional groups, that makes layers become 
denser and smother, with a lower surface roughness, and thus less transparent.
Research limitations/implications: It has been found that due to development of the 
technology of dye-sensitized solar cells with graphene oxide counter electrode, it is possible to 
lowering a production costs by replacing a costly platinum. It is advisable to take into account 
in the further experiments application of counter electrode on different kinds of substrates in 
the selected process parameters, and research for using them in DSSC cells mass production.
Practical implications: DSSC cells are an interesting alternative to silicon solar cells. Presented in 
this paper results showed possibilities of modify dye-sensitized solar cells by replacing costly platinum.
Originality/value: It was shown that dye-sensitized solar cells with graphene oxide 
counter electrode can be used in building integrated photovoltaic.
Keywords: Dye-sensitized solar cells; Counter electrode; Graphene oxide
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1. Introduction 
In popular belief, fossil cells, which are currently the 

main but exhaustible resources, will be replaced by cleaner 
and cheaper renewable energy sources to meet 
environmental and economic challenges of the twenty-first 
century, including energy and environmental crisis. The 
development of new types of solar cells is driven by 
growing public awareness that oil reserves on Earth can be 
exhausted in that century.  

Today's market is dominated by photovoltaic solar cells 
with a junction between inorganic materials with solid 
state, usually from a crystalline or amorphous silicon, using 
the experience and material availability resulting from the 
semiconductor industry [1-4]. In recent years, this 
dominance was disturbed by the appearance of a new 
generation of photovoltaic cells based on nanocrystalline 
materials and conductive polymer films. New generation of 
photovoltaic cells offers the prospect of low-cost 
manufacture of solar cells with a combination of various 
attractive features such as flexible or non-toxic of mainly 
used materials such as titanium oxide, which is used in 
paints, cosmetics and health care products. It is possible to 
complete separation of the semiconductor junction devices 
by replacing the contact phase of the semiconductor 
through the electrolyte-liquid or solid, resulting in a photo-
electrochemical cell. Great progress in the preparation and 
characterization of nanocrystalline materials has opened 
new opportunities for these systems. One example of solar 
cells of this generation are dye-sensitized solar cells in 
which the optical absorption and charge separation process 
is achieved through the use of the dye as the material 
absorbing light and nanocrystalline semiconductor with a 
wide energy gap [5-12].  

Dye-sensitized solar cells is consist of: photoanode, 
counter electrode and electrolyte. The counter electrode is 
one of the key elements of the dye-sensitized solar cells, 
which acts as a catalyst for the reduction reaction of the 
redox couple and is used as a mediator in the regeneration 
of the dye after electron injection or collection of holes in 
the hole conductive material. Fully obligation to transfer an 
electron from the external circuit to the electrolyte with a 
redox couple. Conductive glass coated with platinum is the 
most widely used counter electrode, but it is also one of the 
factors that significantly increase production costs due to 
the use of expensive platinum layers. It is important to 
search for new materials showing anti-corrosive, low cost, 
and allowing to produce a dye-sensitized solar cells with a 
relatively high efficiency [13-17]. 

An important issue is also the transparency of the 
counter electrode especially when used in Building 
Integrated Photovoltaics BIPV on glass and metal 
substrates. Transparency also allows the use in tandem 
cells.  

In recent times, the new carbon nanomaterials with two-
dimensional lattice-like honeycomb called graphene 
aroused interest because of their special electronic 
properties like [18-25]: 
• 0 eV energy gap, which makes that the valence band 

affects the conduction band (Fig. 1),  
• a high electron mobility,  
• high thermal stability, 
• optimal mechanical properties.  

Graphene is extremely durable and at the same time 
very flexible and transparent. By graphene electrons flow 
at high speed.  

Like other carbon materials, graphene has excellent 
thermal and mechanical properties, so can be used in 
optoelectronics, electronics and photovoltaics. 

Graphene as the thinnest material in the universe is a 
flat two-dimensional layer of carbon with a thickness of 
only 1 nm, forming a hexagonal network. Graphene 
structure resembles a honeycomb, and can be regarded as 
part of graphite, consisting of carbon atoms linked together 
with sp2 bonds in a two-dimensional hexagonal crystal 
lattice (Fig. 2) [18,21]. The electronic structure of graphene 
evolves with the number of layers approaching the limit for 
graphite of approximately 10 layers. Electrical properties of 
graphene also depend on the number of layers of graphene. 
The various layers can be stacked on each other in the form 
of (Fig. 3): 
• simple hexagonal (AAA) 
• hexagonal arrangement called Bernel`s (ABA) 
• rhomboedrical-trigonal network (ABC). 

a) b) 

Fig. 1. Energy-band diagram for a) silicon, b) graphene, where 
Ep- conduction band, Ev-valence band, Eg-band gap [21] 

1.	�Introduction
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a) b) 

Fig. 2. Schematic of crystal structure of graphene forming 
a hexagonal structure from carbon atoms, a) real lattice, 
b) reciprocal lattice [18,21] 

Methods for obtaining thin sheets of graphene 
substrates are [18-25]: 
• micromechanical cleavage of highly oriented pyrolytic 

graphite 
• chemical cleavage, 
• chemical vapour deposition CVD. 

• plasma enhanced chemical vapour deposition PECVD, 
• reduction of graphite oxide, 
• epitaxial growing/thermal decomposition of SiC 

substrate and other materials. 

The reduction of graphite oxide (Fig. 4) is one of the 
easiest methods of obtaining derivatives of graphene like: 
graphene oxide GO or the reduced graphene oxide RGO. 
Reduced graphene oxide is a form of graphene which 
possesses some oxygen-containing functional group (-OH, 
=O) on the planes and –COOH carbonyl groups decorating 
the periphery of the planes. This defects produced during 
the oxidation of the graphene sheets, are believed to be 
responsible for the electrocatalystic activity. Taking this 
into consideration, using reduced graphene oxide as 
counter electrode materials is favoured in opposite to fully 
reduced and defect-free graphene [26-40].  

In this research, graphene oxide and thermally reduced 
graphene oxide deposited on glass coated with semi-
transparent conductive oxide have been investigated. The 
use of graphene oxide semi-transparent films as counter 
electrode has been studied. In this regard, Raman 
spectroscopy and Spectrophotometer analysis 
(transmittance and absorbance) were utilized. 

Fig. 3. Diagram of possibility alignment of several layers of graphene a) hexagonal (AAA), b) Bernal (ABA), c) 
rhombohedral (ABC) [17-20] 
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Fig. 4. Production steps of reduced graphene oxide 

2. Materials and methods

2.1. Materials

The FTO (fluorine-doped tin oxide) glass substrates 
(10 Ω/ϒ, 3D nano, Cracow, Poland) were cut into pieces 
with size of 2,5×2,5 cm2 and ultrasonically cleaned in 
distilled water, acetone and ethanol for 10 min, 
respectively. Few layer graphene oxide FLGO were 
purchased from Cheap Tubes (USA). In Table 1 basic 
properties of graphene oxide are shown. Because graphene 
oxide film has a poor quality and the relatively low 
conductivity [32] poly(3,4-ethylenedioxythiophene) 
polystyrene sulfonate PEDOT:PSS was used to increase 
conductivity and enhance film-forming ability. 
PEDOT:PSS was purchased from Sigma Aldrich.  

Table. 
The basic properties of graphene oxide (from CheapTubes) 

Thickness <3 nm 
Purity < 99 wt% 
Method Modified Hummers 
Concentration 2 mgs/ml 
The number of graphene oxide 
layers 

2-4 

Solvent Deionized water 
Size 300-800 nm lateral 

dimensions 
Elemental Analysis  C: 35-42%,  

O: 45-55%,  
H: 3-5% 

2.2. Reduced graphene oxide film preparation

The production steps of graphene oxide counter 
electrodes were shown in Fig. 5. The graphene oxide GO 
thin films were mixed with poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate 
PEDOT:PSS in a given volume ratio (95 wt.% active 
material and 5 wt.% PEDOT:PSS) by using ultrasonication, 
magnetic stirring and homogenization to form an electrode 
slurry. PEDOT:PSS was used to increase conductivity and 
enhance film forming ability. Then mixtures were directly 
deposited on FTO glass substrate by spin coating method. 
The two-stage spin coating were adopted: 500 rpm for 5 s 
and 3000 rpm for 10 s. The GO counter electrodes were 
then dried at 50°C in an oven for 12 h. Before the 
deposition, FTO glasses were cleaned from surface 
contamination by ultrasonic cleaning in deionized water, 
acetone, ethanol and isopropanol and holding in each 
liquids for 15 minutes.  

Fig. 5. Production steps of counter electrodes 

The thermal treatment was performed to remove the 
surface oxides from GO sheets at different heat-treated 
temperatures. For this purpose, two from three samples 
after incubation in oven for 12 h at 50°C were heated and 
then kept at various temperatures under H2 containing 
atmosphere. The thermal reduction was carried out in 
250°C and 500°C for 30 min in a horizontal furnace. The 
graphene oxide thermally reduced in 500°C was designated 
as rGO (reduced graphene oxide). The graphene oxide 

Fig. 4. Production steps of reduced graphene oxide 

2. Materials and methods

2.1. Materials

The FTO (fluorine-doped tin oxide) glass substrates 
(10 Ω/ϒ, 3D nano, Cracow, Poland) were cut into pieces 
with size of 2,5×2,5 cm2 and ultrasonically cleaned in 
distilled water, acetone and ethanol for 10 min, 
respectively. Few layer graphene oxide FLGO were 
purchased from Cheap Tubes (USA). In Table 1 basic 
properties of graphene oxide are shown. Because graphene 
oxide film has a poor quality and the relatively low 
conductivity [32] poly(3,4-ethylenedioxythiophene) 
polystyrene sulfonate PEDOT:PSS was used to increase 
conductivity and enhance film-forming ability. 
PEDOT:PSS was purchased from Sigma Aldrich.  

Table. 
The basic properties of graphene oxide (from CheapTubes) 

Thickness <3 nm 
Purity < 99 wt% 
Method Modified Hummers 
Concentration 2 mgs/ml 
The number of graphene oxide 
layers 

2-4 

Solvent Deionized water 
Size 300-800 nm lateral 

dimensions 
Elemental Analysis  C: 35-42%,  

O: 45-55%,  
H: 3-5% 

2.2. Reduced graphene oxide film preparation

The production steps of graphene oxide counter 
electrodes were shown in Fig. 5. The graphene oxide GO 
thin films were mixed with poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate 
PEDOT:PSS in a given volume ratio (95 wt.% active 
material and 5 wt.% PEDOT:PSS) by using ultrasonication, 
magnetic stirring and homogenization to form an electrode 
slurry. PEDOT:PSS was used to increase conductivity and 
enhance film forming ability. Then mixtures were directly 
deposited on FTO glass substrate by spin coating method. 
The two-stage spin coating were adopted: 500 rpm for 5 s 
and 3000 rpm for 10 s. The GO counter electrodes were 
then dried at 50°C in an oven for 12 h. Before the 
deposition, FTO glasses were cleaned from surface 
contamination by ultrasonic cleaning in deionized water, 
acetone, ethanol and isopropanol and holding in each 
liquids for 15 minutes.  

Fig. 5. Production steps of counter electrodes 

The thermal treatment was performed to remove the 
surface oxides from GO sheets at different heat-treated 
temperatures. For this purpose, two from three samples 
after incubation in oven for 12 h at 50°C were heated and 
then kept at various temperatures under H2 containing 
atmosphere. The thermal reduction was carried out in 
250°C and 500°C for 30 min in a horizontal furnace. The 
graphene oxide thermally reduced in 500°C was designated 
as rGO (reduced graphene oxide). The graphene oxide 

2.1.	�Materials

2.	�Materials and methods

2.2.	Reduced graphene oxide film preparation



17Graphene oxide film as semi-transparent counter electrode for dye-sensitized solar cell

Volume 73 • Issue 1 • November 2015

thermally reduced in 250°C and graphene oxide only 
incubated in an oven were designated as GO250 and GO 
respectively (Fig. 6). 

Fig. 6. Types of counter electrodes used in this work 

2.3. Methodology 

The studies of morphology and purity of the produced 
reduced graphene oxide as well as the layers of graphene 
oxide were made using a Renishaw inVia Raman 
microscope. Raman spectroscopy was performed at room 
temperature with 532 nm Nd-YAG excitation source. 

The ultraviolet-visible (UV-vis) absorbance and 
transmittance spectra of graphene oxide (with different 
thermal treatment) deposited on FTO glass were measured 
using spectrophotometer (Evolution 220, Thermo 
Scientific).  

3. Results and discussion

Ultraviolet-visible spectroscopy measurement was 
carried out to monitor the degree of oxidation for the 
graphene samples. The UV-Vis absorption spectra for 
graphene oxide, graphene oxide annealing in 250°C and 
reduced graphene oxide are shown in Fig. 7. A general 
absorption peak was observed at 230 nm for GO, and 
250 nm for GO250 and rGO corresponding to the 
transition of the C=C bond. Compared with the main peak 
of GO, red-shift was observed for rGO and GO250 
suggesting the conjugated structures within the graphene 
sheets were restored upon thermally reduction. These 
spectral results reflect that rGO sheets have a larger π-
conjugated domains. 

Also, there is a peak around 290 nm (for rGO and 
GO250) and 300 nm (for GO), which is attributed to 

 transition of C=O bond.  

Fig. 7. Absorption spectra for graphene oxide and 
thermally reduced graphene oxide in 250°C and 500°C

Transmittance of the different counter electrodes was 
evaluated and the results are shown in Fig. 8. The 
transmittance of graphene oxide films coated on FTO glass 
was measured to be higher than 60% in the wavelength 
range 430-780 nm. The highest transmittance has GO 
because annealing of grapheneoxide counter electrodes 
under inert atmospheres enable a better ordering of 
graphene films and also cause losing an oxygen functional 
groups, that makes layers become denser and smother, with 
a lower surface roughness, and thus less transparent.  

Raman spectroscopy was further applied to characterize 
the structures properties of GO, GO250 and rGO. Fig. 9 
shows the Raman spectra of graphene oxide thin film 
substrates which was obtained using an excitation laser of 
512 nm. All samples record two major Raman peak at 
~1339 and ~1596 cm-1 corresponding to D (disorder) and G 
(graphitic) bands. The G band is usually assigned to the 
vibration of sp2-bonded carbon atoms in a two dimensional 
hexagonal lattice. The D band is assigned to vibration of 
carbon atoms with dangling bonds in crystal lattice plane 
terminations of disordered graphite. These two bands can 
be observed in defective graphene materials. The original 
GO and thermally reduced GO250 and rGO samples 
display an identical position of G-band peak, what 
indicates on similar layer numbers through different 
thermal treatment.  

3.	�Results and discussion

2.3.	�Methodology
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The Raman ID/IG (disorder/order carbon) and I2D/IG

intensity ratios correspond to the in-plane crystallinity 
dimension and are main feature of disorder in the graphitic 
material. I2D/IG intensity ratio is equal 2 in defect free 
single layer graphene.  

ID/IG ratio for rGO (Table 2) increase in comparison 
with those for GO250 and GO, indicating an increase in the 
number of smaller graphitic domains upon reductions. 
I2D/IG ratio from Raman spectra suggesting that deposited 
GO, GO250 and rGO are a multilayered carbon nature. 
Size of graphene oxide (La) is proportional to the intensity 
of ID/IG as describe below: 

  (1) 

where  is 512 nm. From above equation, the average 
size of graphene oxide, thermally reduced graphene oxide 
in 250°C and in 500°C is calculated to be 575,28 nm, 
556,52 nm and 492,31 nm respectively. It can be seen that, 
the reduction of the surface epoxy groups leads to the size 
decreasing of the graphene oxide.  

Fig. 8. Transmission UV-visible spectrum of the graphene 
oxide films coated on FTO substrates 

The small broader 2D band at ~2700 cm-1 correspond to 
second order D peak due to fourth order phonon 
momentum exchange double resonance process. The 
Raman peak at ~2900 cm-1 correspond to D+D` band which 
is related to two disorder-induced competing mechanism 
contributing to Raman D band. 

Fig. 9. Raman spectra of graphene oxide counter electrode 

Table 2.  
Basic properties determined from Raman spectra 

ID/IG  La [nm] I2D/IG  

GO 0.89 575.28 0.27 

GO250 0.92 556.52 0.24 

rGO 1.04 492.31 0.21 

4. Conclusions

We have demonstrated a dye-sensitized solar cells with 
a semi-transparent graphene oxide counter electrodes 
which can be successfully applied in building integrated 
photovoltaic. The different thermal treatment of graphene 
oxide mixed with PEDOT:PSS were shown. The successful 
synthesis of reduced graphene was confirmed by UV-Vis 
spectroscopy. The absorbance was found to increase with 
thermally reduction. The transmittance of graphene oxide 
films coated on FTO glass was measured to be higher than 
60% in the wavelength range 430-780 nm. It was found 
that, transmittance is depend of ordering of graphene and 
amount of oxygen functional groups.  

The nature of the graphene oxide counter electrode has 
been confirmed by the Raman scattering spectroscopy. The 
increased intensity ratio ID/IG for rGO defines the 
quantitative disorder in graphene is a consequence of a 
high number of defects in materials resulting from the heat 
treatment after oxidation and reduction process. From 
Raman spectroscopy it can be also found the used graphene 
oxide sheets have a multilayered carbon nature.  

4.	�Conclusions
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