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Abstract
Purpose: Solidification of pure metal can be modelled by a two-phase Stefan problem, in which the distribution 
of temperature in the solid and liquid phases is described by the heat conduction equation with initial and 
boundary conditions. The inverse Stefan problem can be applied to solve design problems in casting process.
Design/methodology/approach: In numerical calculations the alternating phase truncation method, the 
Tikhonov regularization and the genetic algorithm were used. The featured examples of calculations show a very 
good approximation of the experimental data.
Findings: The verification of the method of reconstructing the cooling conditions during the solidification of 
pure metals. The solution of the problem consists of selecting the heat transfer coefficient on the boundary, so 
that the temperature in selected points on the boundary of the domain assumes given values.
Research limitations/implications: The method requires that it must be possible to describe the sought 
boundary condition by means of a finite number of parameters. It is not necessary, that the sought boundary 
condition should be linearly dependent on those parameters.
Practical implications: The presented method can be easy applied to solve design problems of different types, 
e.g. for the design of continuous casting installations (incl. the selection of the length of secondary cooling 
zones, the number of jets installed in individual zones, etc.).
Originality/value: Verification, on the grounds of experimental data, the formerly devised method of 
determining the heat transfer coefficient during the solidification of pure metals.
Keywords: Artificial intelligence methods; Casting; Inverse Stefan Problem

Reference to this paper should be given in the following way: 
D. Słota, Reconstruction of the heat transfer coefficient on the grounds of experimental data, Journal of 
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1. Introduction 
 
The inverse problem provides a very useful tool for analyses of 

heat transfer processes, including solidification processes [1,2]. In 
the case of inverse problems the causes of the described phenomena 
are unknown, or are not fully determined. The unique solutions of 

such problems require additional information, for example, 
temperature measurements at selected points of the domain. 

The Stefan problem poses an interesting case of heat transfer 
processes, involving mathematical models describing heat 
processes characterized by the phase changes and the resultant 
emission and absorption of heat. These processes include: 
solidification of metals, formation of crystals, formation of 
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igneous rock, food refrigeration, freezing of soil and water, ice 
melting, etc. The Stefan problem entails a simultaneous 
determination of the distribution of temperature in the domain and 
the location of the boundary separating the domain into the sub-
domains of the liquid and solid phase. 

It is commonly assumed in the discussion of the inverse 
Stefan problem that the additional information compensating the 
absence of input data is some knowledge of the location of the 
boundary of the phase change, its velocity in the normal direction 
or temperature at selected points of the domain. Actually, the 
problems for which the additional information specifies the 
location of the phase change boundary are often regarded as 
design problems. 

Both in the inverse heat conduction problems and in the 
inverse Stefan problems the following tasks may be considered: 
initial values (retrospective), boundary values, parametric values 
(coefficients). The above mentioned problems are ill-posed, i.e. 
the solution of the problem may not exist, or, if it exists, it may be 
non-unique or unstable. Therefore, it is difficult to select an 
appropriate method of obtaining solutions or theoretical results. 
Thus, so far there have been few publications concerning the 
inverse Stefan problem, especially in comparison with works 
focused on the direct Stefan problem. Only one monograph 
dedicated to the discussion of this issue has been published [3]. 

The two-phase one-dimensional inverse Stefan problem in 
which it is necessary to designate the function for the formulation 
of the boundary conditions of the second kind was discussed in 
[4], where the author stipulated the conditions for the existence, 
uniqueness and the linear dependence of the solution on the initial 
data. The approximated solution is derived in the course of the 
iteration of the integral equations containing Green's functions 
and Neumann's functions for Laplace equation. 

Whereas, in [5,6] the mollification method for one-phase, 
one-dimensional inverse Stefan problem, involving the 
reconstruction of temperature and heat flux on the boundary of the 
domain with given location of the phase change front, was 
discussed. 

Furthermore, in [7] the heat flux on the boundary of the 
domain was determined if the velocity of the phase change front 
and the heat fluxes permeating it were known. The task was 
simplified to the minimization of the functional constructed with 
the use of sensitivity coefficients. Accordingly, in [8] two 
methods of the solution of the above mentioned task were 
presented. Both of the methods employed the minimization of the 
square error in view of the calculated and given temperature of 
the phase change front (for the entire time section). The first 
method used the spline functions approximation of an unknown 
heat flux, i.e. the minimization was conducted in finitely 
dimensional space. In the second method the minimization of the 
functional cost was conducted by means of finite conjugate 
gradients or steepest descend (saddle-point) methods. The same 
problem for the two-dimensional case was discussed in [9]. In 
[10] the inverse problem was investigated in the domain, where in 
the liquid phase the heat transfer took place by conduction and 
convection. The problem was divided into two independent 
solutions. The first one was a direct convection task in the liquid 
phase; the second was the inverse task in the solid phase. 
Whereas, in [11] both component tasks were regarded as inverse 
problems. Similar issues were also considered in  [1,12-14].  

In [15] the heat balance integral method was applied to solve 
the inverse Stefan problem. The author assumed that the 
temperature distribution in the solid phase was described by the 
third degree polynomial. One-phase and two-phase one-
dimensional problem, for which the function describing the 
boundary condition must be designated, was considered. 

In [16,17] Adomian decomposition method and the 
variational iteration method in conjunction with optimization to 
the approximate solution of one-phase inverse Stefan problem 
were discussed. Conversely, in [18-20] the same authors applied 
the optimization or approximation method to solve the two-phase 
or three-phase design problem for a one-dimensional or two-
dimensional case.  

In view of an increasing popularity of genetic algorithms, they 
have also had a wide application for solving the inverse problems, 
for example in [21], or in [22-25] where the method of solving the 
inverse Stefan problem is based on genetic algorithms. The 
solution consists in selecting the heat transfer coefficient (or heat 
flux) on one of the boundaries in such a way that the phase 
change front accepts the assumed location, or that the temperature 
calculated at selected points of the domain approximates the given 
values as exactly as possible. The method has been stable both in 
terms of errors in the initial data, as well as the number of control 
points; moreover, it is more exact in comparison with the methods 
based on classic optimization algorithms. 

There are also other papers available, which deal with various 
problems connected with solidification or heat treatment of 
different materials (see for example [26-31]). 

In this paper the method of reconstructing the function 
describing the boundary conditions in the solidification of 
aluminium is verified on the grounds of experimental data. An 
algorithm enabling the solution of the inverse Stefan problem, 
where additional information consists of temperature 
measurements at selected points of the domain, is presented. The 
calculations use the experimental data obtained in the course of 
aluminium solidification process. Based on given information 
about the temperature measurements, a functional defining the 
error of an approximate solution is constructed. To find the 
minimum of the functional, a genetic algorithm is used [32,33]. 
For the solution of a direct Stefan problem, the alternating phase 
truncation method is applied [23,34]. 

 
 

2. Governing equations 
 
The boundary of the considered domain (see Figure 1): 
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Fig. 1. Domain of the problem 
 
In the discussion the cooling conditions in the process are 

selected in such a manner that the temperature at given points of 
the domain will have the following values: 
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where Dri , and N  denotes the number of the 
measurements. Furthermore, we designate the position of the 
freezing front g  and the temperature distributions kT  in 

domains kD  ( 2,1k ), which fulfil the heat conduction 
equation ( kDtx, ): 
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where kc , k  and k  are the specific heat, the mass density and 
the thermal conductivity in the liquid phase ( 1k ) and solid 
phase ( 2k ), respectively. On the boundary 0  the initial 

condition is determined ( *
0 TT ): 
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second kind is designated: 

.0),0( t
n
Tk  (8) 

On the boundary 2  the boundary condition of the third kind is 
designated: 

,,),( TtbTttb
n
T

k
k

k  (9) 

where  is the heat transfer coefficient and T  is the 

surrounding temperature. Whereas, on the freezing front g  the 

temperature continuity condition and the Stefan condition are 
designated:  
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where *T  is the temperature of melting point, L  is the latent 
heat of solidification. 
Function t , describing the heat transfer coefficient, will be 
sought in the form of a function dependent (in a linear or non-
linear way) on n  parameters: 

.,,,; 21 ntt  (12) 

Let V  denotes a set of all functions in the form of (12). In real 

processes, function t  does not have an arbitrary value. 
Therefore, the problem of minimization with constraints has some 
practical importance. Assuming that: 
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For the determined function Vt , the problem (6)-
(11) becomes a direct Stefan problem, the solution of which 
allows to find the courses of temperatures ii rTT 2   

corresponding to function t . Using the calculated 

temperatures iT  and the given temperatures iU , we can build 
a functional which will determine the error of the approximate 
solution: 
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3. Genetic algorithm 
 
To find the minimum of the functional (14), a genetic 

algorithm was used [32,33]. In the calculations real number 
representation of a chromosome and a tournament selection was 
used. This selection was carried out in such a manner that two 
chromosomes were drawn and the one with better fitness went  to 
a new generation. There were so many draws as many individuals  
the new generation was supposed to include. An elitist model was 
also applied in the algorithm, where the best individual of the 
previous generation is saved and, if all individuals in the current 
generation are worse, the worst of them is replaced with the best 
individual from the previous population. 

As the crossover operator, the arithmetical crossover was 
applied, where as a result of the crossing of chromosomes 
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igneous rock, food refrigeration, freezing of soil and water, ice 
melting, etc. The Stefan problem entails a simultaneous 
determination of the distribution of temperature in the domain and 
the location of the boundary separating the domain into the sub-
domains of the liquid and solid phase. 

It is commonly assumed in the discussion of the inverse 
Stefan problem that the additional information compensating the 
absence of input data is some knowledge of the location of the 
boundary of the phase change, its velocity in the normal direction 
or temperature at selected points of the domain. Actually, the 
problems for which the additional information specifies the 
location of the phase change boundary are often regarded as 
design problems. 

Both in the inverse heat conduction problems and in the 
inverse Stefan problems the following tasks may be considered: 
initial values (retrospective), boundary values, parametric values 
(coefficients). The above mentioned problems are ill-posed, i.e. 
the solution of the problem may not exist, or, if it exists, it may be 
non-unique or unstable. Therefore, it is difficult to select an 
appropriate method of obtaining solutions or theoretical results. 
Thus, so far there have been few publications concerning the 
inverse Stefan problem, especially in comparison with works 
focused on the direct Stefan problem. Only one monograph 
dedicated to the discussion of this issue has been published [3]. 

The two-phase one-dimensional inverse Stefan problem in 
which it is necessary to designate the function for the formulation 
of the boundary conditions of the second kind was discussed in 
[4], where the author stipulated the conditions for the existence, 
uniqueness and the linear dependence of the solution on the initial 
data. The approximated solution is derived in the course of the 
iteration of the integral equations containing Green's functions 
and Neumann's functions for Laplace equation. 

Whereas, in [5,6] the mollification method for one-phase, 
one-dimensional inverse Stefan problem, involving the 
reconstruction of temperature and heat flux on the boundary of the 
domain with given location of the phase change front, was 
discussed. 

Furthermore, in [7] the heat flux on the boundary of the 
domain was determined if the velocity of the phase change front 
and the heat fluxes permeating it were known. The task was 
simplified to the minimization of the functional constructed with 
the use of sensitivity coefficients. Accordingly, in [8] two 
methods of the solution of the above mentioned task were 
presented. Both of the methods employed the minimization of the 
square error in view of the calculated and given temperature of 
the phase change front (for the entire time section). The first 
method used the spline functions approximation of an unknown 
heat flux, i.e. the minimization was conducted in finitely 
dimensional space. In the second method the minimization of the 
functional cost was conducted by means of finite conjugate 
gradients or steepest descend (saddle-point) methods. The same 
problem for the two-dimensional case was discussed in [9]. In 
[10] the inverse problem was investigated in the domain, where in 
the liquid phase the heat transfer took place by conduction and 
convection. The problem was divided into two independent 
solutions. The first one was a direct convection task in the liquid 
phase; the second was the inverse task in the solid phase. 
Whereas, in [11] both component tasks were regarded as inverse 
problems. Similar issues were also considered in  [1,12-14].  

In [15] the heat balance integral method was applied to solve 
the inverse Stefan problem. The author assumed that the 
temperature distribution in the solid phase was described by the 
third degree polynomial. One-phase and two-phase one-
dimensional problem, for which the function describing the 
boundary condition must be designated, was considered. 

In [16,17] Adomian decomposition method and the 
variational iteration method in conjunction with optimization to 
the approximate solution of one-phase inverse Stefan problem 
were discussed. Conversely, in [18-20] the same authors applied 
the optimization or approximation method to solve the two-phase 
or three-phase design problem for a one-dimensional or two-
dimensional case.  

In view of an increasing popularity of genetic algorithms, they 
have also had a wide application for solving the inverse problems, 
for example in [21], or in [22-25] where the method of solving the 
inverse Stefan problem is based on genetic algorithms. The 
solution consists in selecting the heat transfer coefficient (or heat 
flux) on one of the boundaries in such a way that the phase 
change front accepts the assumed location, or that the temperature 
calculated at selected points of the domain approximates the given 
values as exactly as possible. The method has been stable both in 
terms of errors in the initial data, as well as the number of control 
points; moreover, it is more exact in comparison with the methods 
based on classic optimization algorithms. 

There are also other papers available, which deal with various 
problems connected with solidification or heat treatment of 
different materials (see for example [26-31]). 

In this paper the method of reconstructing the function 
describing the boundary conditions in the solidification of 
aluminium is verified on the grounds of experimental data. An 
algorithm enabling the solution of the inverse Stefan problem, 
where additional information consists of temperature 
measurements at selected points of the domain, is presented. The 
calculations use the experimental data obtained in the course of 
aluminium solidification process. Based on given information 
about the temperature measurements, a functional defining the 
error of an approximate solution is constructed. To find the 
minimum of the functional, a genetic algorithm is used [32,33]. 
For the solution of a direct Stefan problem, the alternating phase 
truncation method is applied [23,34]. 
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Fig. 1. Domain of the problem 
 
In the discussion the cooling conditions in the process are 

selected in such a manner that the temperature at given points of 
the domain will have the following values: 
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where Dri , and N  denotes the number of the 
measurements. Furthermore, we designate the position of the 
freezing front g  and the temperature distributions kT  in 

domains kD  ( 2,1k ), which fulfil the heat conduction 
equation ( kDtx, ): 
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where kc , k  and k  are the specific heat, the mass density and 
the thermal conductivity in the liquid phase ( 1k ) and solid 
phase ( 2k ), respectively. On the boundary 0  the initial 

condition is determined ( *
0 TT ): 
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where  is the heat transfer coefficient and T  is the 

surrounding temperature. Whereas, on the freezing front g  the 
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where *T  is the temperature of melting point, L  is the latent 
heat of solidification. 
Function t , describing the heat transfer coefficient, will be 
sought in the form of a function dependent (in a linear or non-
linear way) on n  parameters: 
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Let V  denotes a set of all functions in the form of (12). In real 

processes, function t  does not have an arbitrary value. 
Therefore, the problem of minimization with constraints has some 
practical importance. Assuming that: 
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For the determined function Vt , the problem (6)-
(11) becomes a direct Stefan problem, the solution of which 
allows to find the courses of temperatures ii rTT 2   
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temperatures iT  and the given temperatures iU , we can build 
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solution: 
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3. Genetic algorithm 
 
To find the minimum of the functional (14), a genetic 

algorithm was used [32,33]. In the calculations real number 
representation of a chromosome and a tournament selection was 
used. This selection was carried out in such a manner that two 
chromosomes were drawn and the one with better fitness went  to 
a new generation. There were so many draws as many individuals  
the new generation was supposed to include. An elitist model was 
also applied in the algorithm, where the best individual of the 
previous generation is saved and, if all individuals in the current 
generation are worse, the worst of them is replaced with the best 
individual from the previous population. 

As the crossover operator, the arithmetical crossover was 
applied, where as a result of the crossing of chromosomes 
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,1 21'1 pp  (15) 

,1 12'2 pp  (16) 
where parameter p  is a random number with a uniform 
distribution from the domain 1,0 . In the calculations, 
a nonuniform mutation operator was used as well. During 
mutation, the i  gene from chromosome 

ni ,,,,1 , was transformed according to the 
equation: 
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l
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i
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and a decision about which one from the above formulas should 
be applied was taken at random. Function ,  was assumed 
in the form: 

,1, /1 gMp   (18) 
where p  is a random number with a uniform distribution from 
the domain 1,0 ,  is a current generation number, M  is 
a maximum number of generations and g  is a constant parameter 
(in the calculations, 2g  was assumed). 
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Fig. 2. Flowchart of the genetic algorithm 
 

The flowchart of the genetic algorithm was shown in Figure 2. 
In the calculations the parameters used for the genetic algorithm 
are as follows: 
 population size 70popn , 

 number of generations 100M ,  

 crossover probability 7.0cp , 

 mutation probability 1.0mp . 
 
 

4. Alternating phase truncation method 
 
 

To solve a direct Stefan problem, the alternating phase 
truncation method was applied [23,34]. In this method in place of 
temperature we insert an enthalpy: 
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Function TH  is discontinuous in the point given by the 
temperature of the phase change *T . Its left-hand and right-hand 
limits at this point will be denoted as sH  and lH : 

,
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If we use equation (19) in the Stefan problem, we will obtain 

in both phases, a heat conduction equation where the temperature 
will be replaced with enthalpy. 

The algorithm of the alternating phase truncation method (for 
one time's step) consists of two stages. Let's assume that we know 
the distribution of enthalpy in time it  from the initial condition or 
from the previous step of the calculations. In the first stage we 
reduce the entire domain to a liquid phase, i.e. to the points at which 
the value of the enthalpy is smaller than 

lH  and supply 
(symbolically) such quantity of heat that the enthalpy equals to 

lH . 
The so obtained heat transfer problem in a one-phase domain can be 
solved by one of the known methods (e.g. the finite-difference 
method), thereby obtaining an approximate distribution of enthalpy. 
At points to which we have supplied a certain amount of heat, the 
same amount must be now deducted. After this operation we obtain 
the distribution of enthalpy, which is treated as a starting point for 
the second stage of calculations (at moment it ). 

In the second stage, we reduce the whole domain to a solid 
phase, i.e. at those points of the domain where the enthalpy value 
is higher than sH , we carry away (symbolically) such amount of 

heat that would allow the enthalpy to adopt a value equal sH . 
Like in the first stage, we find an approximate distribution of 
enthalpy. At the end of the second stage, at the points where we 
artificially carried away a certain amount of heat, we add the same 
amount of heat. This completes the second stage and at the same 
time, one step of the calculations (transfer from time it  to time 

1it ) of the alternating phase truncation method. 

 

In the alternating phase truncation method, for each time step, 
the heat transfer equation is solved twice. Therefore, we must see 
to appropriate consideration of the boundary conditions, so that 
they would influence the discussed system only over time t , 
and not t2 . In the first stage of the alternating phase truncation 
method, we take the real boundary conditions only on those 
boundary fragments where the liquid phase contacts the 
neighborhood. At the same time, we isolate the remaining 
fragments of the boundary. In the second stage, we consider the 
real boundary conditions on those boundary fragments where the 
solid phase contacts the neighborhood and we isolate the 
remaining fragments of the boundary. 

 
 

5. Calculations 
 

The calculations are based on the experimental data obtained 
in the course of aluminium (EN AW-Al99.5) solidification 
process. The experiment was performed with the use of the 
Universal Metallurgical Stimulator and Analyzer (UMSA) - an 
instrument designed for the analysis of thermal processes of metal 
samples [35-38]. In the experiment, two cylinder samples with the 
diameter of 18 mm and height of 20 mm were used. The material 
was melted in a crucible induction furnace and cast into a graphite 
mould with the diameter of 25 mm. Next, it was mechanically 
treated to achieve the require dimensions. A thermocouple was 
mounted in a central part of sampling casting and connected to the 
recording device. Three complete melting and solidification loops 
of the sample were performed in the course of the experiment, 
that is: each sample rendered three temperature distributions. 

The calculations are focused on reconstructing function 
dependent on a different number of parameters (one, three, six, 

ten or twenty): 
.20,10,6,3,1,,,,; 21 ntt n  (23) 

In the alternating phase truncation method, the finite-
difference method was used. The calculations made on the grid of 
discretization intervals equalling  1.0t  and 500/bx . 
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Fig. 3. The heat transfer coefficient reconstructed for a different 
number of parameters 

In Figure 3 the heat transfer coefficient reconstructed for 
different number of the sought parameters is shown; whereas 
Figures 4, 5 and 6 present the cooling curve plotted in the course 
of the experiment and its reconstruction for the designated heat 
transfer coefficient. Absolute errors of the reconstruction of the 
cooling curve are shown in Figures 7, 8 and 9. The mean and 
maximal relative and absolute errors of the reconstruction of the 
cooling curve for the heat transfer coefficient derived for different 
number of the sough parameters are compiled in Table 1. 

 
 

Table 1. 
Errors in the reconstruction of the cooling curve ( mean  - mean 

relative percentage error, max  - maximal relative percentage error, 

mean  - mean absolute error, max  - maximal absolute error) 
n  1 3 6 10 20 

mean [%] 4.840  0.559  0.341 0.227 0.232

max [%] 10.538 4.207 1.907 1.469 1.433

mean [K] 27.836 3.939 2.436 1.520 1.450

max [K] 68.910 40.974 17.460 13.510 13.180

 
 

The results indicate that an increase in the number of the 
parameters leads to a better reconstruction of the cooling curve. 
At the same time, the mean and maximal values of relative and 
absolute errors decrease. The only exception is the case of ten 
parameters, for which the mean relative percentage error is 
0.227 % and is insignificantly smaller than the corresponding 
error for twenty parameters (which equals 0.232 %). Such result 
may have been caused by the fact that the biggest errors for ten 
parameters occurred at the points of higher temperature as 
compared with the case of twenty parameters. All the other errors 
for twenty parameters are smaller than the corresponding errors 
for the case of ten parameters. 
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Fig. 4. The cooling curve (solid line - measurement data, dashed 
line - the curve reconstructed for one parameter) 
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where parameter p  is a random number with a uniform 
distribution from the domain 1,0 . In the calculations, 
a nonuniform mutation operator was used as well. During 
mutation, the i  gene from chromosome 

ni ,,,,1 , was transformed according to the 
equation: 

,,
,,'

l
iii

i
u
ii

i  (17) 

and a decision about which one from the above formulas should 
be applied was taken at random. Function ,  was assumed 
in the form: 

,1, /1 gMp   (18) 
where p  is a random number with a uniform distribution from 
the domain 1,0 ,  is a current generation number, M  is 
a maximum number of generations and g  is a constant parameter 
(in the calculations, 2g  was assumed). 
 

Calculation of fitness function 
value (solving the direct 

Stefan problem)

Calculation of fitness function 
value (solving the direct 

Stefan problem)

Selection 
of initial population

Application 
of elitist model

The result is a chromosome 
with the best fitness 

function value

The end?

Yes

No

Application of selection method,
crossover and mutation operator

 
 

Fig. 2. Flowchart of the genetic algorithm 
 

The flowchart of the genetic algorithm was shown in Figure 2. 
In the calculations the parameters used for the genetic algorithm 
are as follows: 
 population size 70popn , 

 number of generations 100M ,  

 crossover probability 7.0cp , 

 mutation probability 1.0mp . 
 
 

4. Alternating phase truncation method 
 
 

To solve a direct Stefan problem, the alternating phase 
truncation method was applied [23,34]. In this method in place of 
temperature we insert an enthalpy: 

,)( 2
0

LTdssscTH
T

  (19) 

where 

.0
,1

*

*

TTfor
TTfor

T   (20) 

Function TH  is discontinuous in the point given by the 
temperature of the phase change *T . Its left-hand and right-hand 
limits at this point will be denoted as sH  and lH : 

,
*

0

dssscH
T

s  (21) 

.2LHH sl  (22) 
If we use equation (19) in the Stefan problem, we will obtain 

in both phases, a heat conduction equation where the temperature 
will be replaced with enthalpy. 

The algorithm of the alternating phase truncation method (for 
one time's step) consists of two stages. Let's assume that we know 
the distribution of enthalpy in time it  from the initial condition or 
from the previous step of the calculations. In the first stage we 
reduce the entire domain to a liquid phase, i.e. to the points at which 
the value of the enthalpy is smaller than 

lH  and supply 
(symbolically) such quantity of heat that the enthalpy equals to 

lH . 
The so obtained heat transfer problem in a one-phase domain can be 
solved by one of the known methods (e.g. the finite-difference 
method), thereby obtaining an approximate distribution of enthalpy. 
At points to which we have supplied a certain amount of heat, the 
same amount must be now deducted. After this operation we obtain 
the distribution of enthalpy, which is treated as a starting point for 
the second stage of calculations (at moment it ). 

In the second stage, we reduce the whole domain to a solid 
phase, i.e. at those points of the domain where the enthalpy value 
is higher than sH , we carry away (symbolically) such amount of 

heat that would allow the enthalpy to adopt a value equal sH . 
Like in the first stage, we find an approximate distribution of 
enthalpy. At the end of the second stage, at the points where we 
artificially carried away a certain amount of heat, we add the same 
amount of heat. This completes the second stage and at the same 
time, one step of the calculations (transfer from time it  to time 

1it ) of the alternating phase truncation method. 

 

In the alternating phase truncation method, for each time step, 
the heat transfer equation is solved twice. Therefore, we must see 
to appropriate consideration of the boundary conditions, so that 
they would influence the discussed system only over time t , 
and not t2 . In the first stage of the alternating phase truncation 
method, we take the real boundary conditions only on those 
boundary fragments where the liquid phase contacts the 
neighborhood. At the same time, we isolate the remaining 
fragments of the boundary. In the second stage, we consider the 
real boundary conditions on those boundary fragments where the 
solid phase contacts the neighborhood and we isolate the 
remaining fragments of the boundary. 

 
 

5. Calculations 
 

The calculations are based on the experimental data obtained 
in the course of aluminium (EN AW-Al99.5) solidification 
process. The experiment was performed with the use of the 
Universal Metallurgical Stimulator and Analyzer (UMSA) - an 
instrument designed for the analysis of thermal processes of metal 
samples [35-38]. In the experiment, two cylinder samples with the 
diameter of 18 mm and height of 20 mm were used. The material 
was melted in a crucible induction furnace and cast into a graphite 
mould with the diameter of 25 mm. Next, it was mechanically 
treated to achieve the require dimensions. A thermocouple was 
mounted in a central part of sampling casting and connected to the 
recording device. Three complete melting and solidification loops 
of the sample were performed in the course of the experiment, 
that is: each sample rendered three temperature distributions. 

The calculations are focused on reconstructing function 
dependent on a different number of parameters (one, three, six, 

ten or twenty): 
.20,10,6,3,1,,,,; 21 ntt n  (23) 

In the alternating phase truncation method, the finite-
difference method was used. The calculations made on the grid of 
discretization intervals equalling  1.0t  and 500/bx . 
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Fig. 3. The heat transfer coefficient reconstructed for a different 
number of parameters 

In Figure 3 the heat transfer coefficient reconstructed for 
different number of the sought parameters is shown; whereas 
Figures 4, 5 and 6 present the cooling curve plotted in the course 
of the experiment and its reconstruction for the designated heat 
transfer coefficient. Absolute errors of the reconstruction of the 
cooling curve are shown in Figures 7, 8 and 9. The mean and 
maximal relative and absolute errors of the reconstruction of the 
cooling curve for the heat transfer coefficient derived for different 
number of the sough parameters are compiled in Table 1. 

 
 

Table 1. 
Errors in the reconstruction of the cooling curve ( mean  - mean 

relative percentage error, max  - maximal relative percentage error, 

mean  - mean absolute error, max  - maximal absolute error) 
n  1 3 6 10 20 

mean [%] 4.840  0.559  0.341 0.227 0.232

max [%] 10.538 4.207 1.907 1.469 1.433

mean [K] 27.836 3.939 2.436 1.520 1.450

max [K] 68.910 40.974 17.460 13.510 13.180

 
 

The results indicate that an increase in the number of the 
parameters leads to a better reconstruction of the cooling curve. 
At the same time, the mean and maximal values of relative and 
absolute errors decrease. The only exception is the case of ten 
parameters, for which the mean relative percentage error is 
0.227 % and is insignificantly smaller than the corresponding 
error for twenty parameters (which equals 0.232 %). Such result 
may have been caused by the fact that the biggest errors for ten 
parameters occurred at the points of higher temperature as 
compared with the case of twenty parameters. All the other errors 
for twenty parameters are smaller than the corresponding errors 
for the case of ten parameters. 
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Fig. 4. The cooling curve (solid line - measurement data, dashed 
line - the curve reconstructed for one parameter) 
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Fig. 5. The cooling curve (solid line - measurement data, dashed 
line - the curve reconstructed for six parameters) 
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Fig. 6. The cooling curve (solid line - measurement data, dashed 
line - the curve reconstructed for twenty parameters) 
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Fig. 7. The absolute errors of the reconstruction of the cooling 
curve for one parameter 
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Fig. 8. The absolute errors of the reconstruction of the cooling 
curve for six parameters 
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Fig. 9. The absolute errors of the reconstruction of the cooling 
curve for twenty parameters 
 
 

6. Conclusions 
 

In the paper, on the grounds of the cooling curves designated 
in the course of the solidification of aluminium, the heat transfer 
coefficient on the boundary of the domain was derived. The 
process was modelled on the one-dimensional inverse Stefan 
problem. The results indicate that such a simple mathematical 
model of metal solidification rendered a very good approximation 
of the experimental data.  
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Fig. 5. The cooling curve (solid line - measurement data, dashed 
line - the curve reconstructed for six parameters) 
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Fig. 6. The cooling curve (solid line - measurement data, dashed 
line - the curve reconstructed for twenty parameters) 
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Fig. 7. The absolute errors of the reconstruction of the cooling 
curve for one parameter 
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Fig. 8. The absolute errors of the reconstruction of the cooling 
curve for six parameters 
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Fig. 9. The absolute errors of the reconstruction of the cooling 
curve for twenty parameters 
 
 

6. Conclusions 
 

In the paper, on the grounds of the cooling curves designated 
in the course of the solidification of aluminium, the heat transfer 
coefficient on the boundary of the domain was derived. The 
process was modelled on the one-dimensional inverse Stefan 
problem. The results indicate that such a simple mathematical 
model of metal solidification rendered a very good approximation 
of the experimental data.  
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